Tag Archives: motor brushless

China Hot selling High Speed DC Brushless Cross Flow Fan Electric Mini Motor a/c vacuum pump

Product Description

DC Brushless Motor M25-20

General Specification:

Operating Temperature:-10ºC~70ºC
Motor Protection: Auto Restart or Polarity Protection
Insulation Resistance: 20MΩ or over with a DC500V Megger
Dielectric Withstand Voltage: AC500V 1s
Bearing Type: Sleeve Bearing or Ball bearing

Model No. Bearing Type Voltage
 (V)
Speed (RPM) Current
(A)
Shaft Diameter (mm) Shaft Length (mm) Weight
(g)
M25-20 S/D 5V-24V according to customer requirements 50

·All reading are typical values at rated voltage.
·Parameters can be set according to customer requirements.

More Models

Type Model Type Model
AC Shaded Pole Motor Z4815 DC Brushless Motor M25-20 
Z6110 M38-20
Z6120 M68-30
Z6130  
Z8213  
Z8220  

Application
This kind of motor has simple structure, reliable operation, no spark and low electromagnetic noise, and is widely used in modern production equipment, instruments and meters, computer peripherals and advanced household appliances.

What is our factory like?

We have got many certifications such as ISO9001, ISO14000, CE, UL, TUV, CCC, SGS, RoHS, REACH etc.

Building trust in professional services.
Thank you for your trust and we are honored to cooperate with you.We will try our best to ensure the quality of products and provide high quality service.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Single-Phase
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Order Sample

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

How do electric motors handle variations in voltage and frequency?

Electric motors are designed to handle variations in voltage and frequency to ensure proper operation and performance. The ability of electric motors to adapt to different voltage and frequency conditions depends on their design characteristics and the presence of additional control devices. Here’s a detailed explanation of how electric motors handle variations in voltage and frequency:

  1. Voltage Variations: Electric motors can handle certain variations in voltage without significant issues. The motor’s design factors in a voltage tolerance range to accommodate fluctuations in the power supply. However, excessive voltage variations beyond the motor’s tolerance can affect its performance and lead to problems such as overheating, increased energy consumption, and premature failure. To mitigate the impact of voltage variations, electric motors may incorporate the following features:
    • Voltage Regulation: Some electric motors, especially those used in industrial applications, may include voltage regulation mechanisms. These mechanisms help stabilize the motor’s voltage, compensating for slight voltage fluctuations and maintaining a relatively steady supply.
    • Voltage Protection Devices: Motor control circuits often incorporate protective devices such as voltage surge suppressors and voltage regulators. These devices help prevent voltage spikes and transient voltage variations from reaching the motor, safeguarding it against potential damage.
    • Voltage Monitoring: In certain applications, voltage monitoring systems may be employed to continuously monitor the motor’s supply voltage. If voltage variations exceed acceptable limits, the monitoring system can trigger alarms or take corrective actions, such as shutting down the motor to prevent damage.
  2. Frequency Variations: Electric motors are designed to operate at a specific frequency, typically 50 or 60 Hz, depending on the region. However, variations in the power system frequency can occur due to factors such as grid conditions or the use of frequency converters. Electric motors handle frequency variations in the following ways:
    • Constant Speed Motors: Most standard electric motors are designed for operation at a fixed speed corresponding to the rated frequency. When the frequency deviates from the rated value, the motor’s rotational speed changes proportionally. This can affect the motor’s performance, especially in applications where precise speed control is required.
    • Variable Frequency Drives (VFDs): Variable frequency drives are electronic devices that control the speed of an electric motor by varying the supplied frequency and voltage. VFDs allow electric motors to operate at different speeds and handle frequency variations effectively. By adjusting the frequency and voltage output, VFDs enable precise control of motor speed and torque, making them ideal for applications where speed control and energy efficiency are critical.
    • Inverter Duty Motors: Inverter duty motors are specifically designed to handle the frequency variations encountered when operated with VFDs. These motors feature improved insulation systems and robust designs to withstand the harmonic distortions and voltage spikes associated with VFD operation.
  3. Motor Protection: Electric motors may incorporate protective features to safeguard against adverse effects caused by voltage and frequency variations. These protection mechanisms include:
    • Thermal Protection: Motors often include built-in thermal protection devices such as thermal switches or sensors. These devices monitor the motor’s temperature and can automatically shut it down if it exceeds safe limits due to voltage or frequency variations that lead to excessive heating.
    • Overload Protection: Overload protection devices, such as overload relays, are employed to detect excessive currents drawn by the motor. If voltage or frequency variations cause the motor to draw abnormal currents, the overload protection device can interrupt the power supply to prevent damage.
    • Voltage/Frequency Monitoring: Advanced motor control systems may incorporate voltage and frequency monitoring capabilities. These systems continuously measure and analyze the motor’s supply voltage and frequency, providing real-time feedback on any deviations. If voltage or frequency variations exceed predetermined thresholds, the monitoring system can activate protective actions or trigger alarms for further investigation.

In summary, electric motors handle variations in voltage and frequency through design considerations, additional control devices, and protective mechanisms. Voltage variations are managed through voltage regulation, protective devices, and monitoring systems. Frequency variations can be accommodated by using variable frequency drives (VFDs) or employing inverter duty motors. Motor protection features, such as thermal protection and overload relays, help safeguard the motor against adverse effects caused by voltage and frequency variations. These measures ensure the reliable and efficient operation of electric motors under different voltage and frequency conditions.

electric motor

How do electric motors generate motion and mechanical work?

Electric motors generate motion and mechanical work through the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors accomplish this:

  1. Magnetic Fields: Electric motors consist of a stationary part called the stator and a rotating part called the rotor. The stator contains coils of wire that are supplied with an electric current, creating a magnetic field around them. The rotor, on the other hand, typically has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor creates a rotational force, also known as torque. This torque causes the rotor to start rotating.
  3. Electromagnetic Induction: In certain types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current (AC) is supplied to the stator, it creates a changing magnetic field. This changing magnetic field induces voltage in the rotor, which leads to the flow of current in the rotor. The current in the rotor produces its own magnetic field, and the interaction between the stator’s magnetic field and the rotor’s magnetic field results in rotation.
  4. Commutation: In motors that use direct current (DC), such as brushed DC motors, commutation is employed. Commutation is the process of reversing the direction of current in the rotor’s electromagnets as the rotor rotates. This is done using a component called a commutator, which ensures that the magnetic fields of the rotor and the stator are always properly aligned. By periodically reversing the current, the commutator allows for continuous rotation.
  5. Conversion of Electrical Energy to Mechanical Energy: As the rotor rotates, the mechanical energy is produced. The rotational motion of the rotor is transferred to the motor’s output shaft, which is connected to the load or the device that needs to be driven. The mechanical work is performed as the output shaft drives the load, such as spinning a fan blade, rotating a conveyor belt, or powering a machine.

In summary, electric motors generate motion and mechanical work by utilizing the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. The electric current flowing through the stator’s coils creates a magnetic field that interacts with the magnetic field of the rotor, producing torque and initiating rotation. In some motors, electromagnetic induction is employed, where a changing magnetic field induces voltage and current in the rotor, leading to rotation. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft, enabling the motor to perform mechanical work by driving the load.

China Hot selling High Speed DC Brushless Cross Flow Fan Electric Mini Motor   a/c vacuum pump		China Hot selling High Speed DC Brushless Cross Flow Fan Electric Mini Motor   a/c vacuum pump
editor by CX 2024-05-07

China best High Torque NEMA 17/23/34 Type 86bygh 450A/450b/450c Hybrid Stepper Motor Brushless Electric Motor BLDC Motor with Great quality

Product Description

Product Information

Stepper motors, AC servo motors and brushless dc motors are avaiable to customized for the world,
EMA 11, 14, 16, 17, 23, 24, 34 stepper motor, 50W, 100W, 200W, 400W, 500W,750W, 1000W, 1200W
AC servo motor, and brushless dc motor are all included. 

The derived products are widely used in ATM machines, digital scanners, stylus printers, plotters, slot
machines, CD-ROM drivers, stage lighting, camera lenses, CNC machines, medical machines,3D printers,
leaning machines and quadcopter for industry and our life.
 

All the derived products of us can be customized for your needs.  
 

1.About us
We are in HangZhou, ZheJiang , which is the hometown of CNC Router. We are focus on CNC Machine Parts.

We’ve been in this business for more than 10 years.

2.What products do we have?
We have many CNC Machine Parts , include Spindle,Inverter,stepper motor,driver,guide rail,sliding block,
rack,gear box,water pump,dust collector,coupling,tool-setter,tool cutter.  And so on …
 

3.How we guarantee the quality of the products?

Each batch of products will pass the test before leaving the factory.
Before delivery, we will check the list 1 by one.
 

4.Why you should choose us?

We are focus on CNC Router Parts more than 10years. We can provide you with the overall solution, We
can offer you many type CNC products.Just tell us which you need , we will provide you as the best price
and the best quality and service.
 

5.What’s the payment term?

We normally accept T/T, Western Union, L/C, and Paypal.
 

6.What about the shipping ?

We support multiple modes of transportation,such as by express,by air,by sea,by rail and so on.
Also can shipping by DHL\FedEx\TNT\UPS\EMS and so on.
We can offer different type transactions:  FOB\EXW\FCA\DAP\CIF.
We can also help you to keep other suppliers goods at our warehouse and shipping together.
 

7.How to place an order?

Just tell us what you need , then we can make a Invoice for you. If all OK , then make the order and we
shipping to you the goods ASAP.
In order to ensure that all products are what you need, we will show you the pictures, drawings, videos
and so on before shipping .
 

8.What about the delivery time?

We have a large warehouse and most of our goods are in stock.When you have order, we can shipping
the goods fast.
Generally speaking, the time from our warehouse to the forwarder is about 2 days, and then the goods
can be sent by DHL FedEx UPS TNT to you.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: on Line Service
Warranty: on Line Service
Logo Printing: with Logo Printing
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

How do manufacturers ensure the quality and reliability of electric motors?

Manufacturers employ several measures and quality control processes to ensure the quality and reliability of electric motors. These measures span from design and manufacturing stages to testing and inspections. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of electric motors:

  1. Robust Design and Engineering: Manufacturers invest significant effort in designing electric motors with robust engineering principles. This involves careful selection of materials, precise calculations, and simulation techniques to ensure optimal performance and durability. Thorough design reviews and analysis are conducted to identify potential issues and optimize the motor’s design for reliability.
  2. Stringent Manufacturing Processes: Manufacturers adhere to stringent manufacturing processes to maintain consistent quality standards. This includes using advanced manufacturing technologies, automated assembly lines, and precision machining to ensure accurate and reliable motor production. Strict quality control measures are implemented at each stage of manufacturing, including material inspection, component testing, and assembly verification.
  3. Quality Control and Testing: Comprehensive quality control and testing procedures are implemented to assess the performance and reliability of electric motors. This includes electrical testing to verify motor characteristics such as voltage, current, power consumption, and efficiency. Mechanical testing is conducted to assess factors like torque, vibration, and noise levels. Additionally, endurance tests are performed to evaluate the motor’s performance over extended operating periods.
  4. Certifications and Compliance: Electric motor manufacturers often obtain certifications and comply with industry standards to ensure quality and reliability. These certifications, such as ISO 9001, IEC standards, and UL certifications, demonstrate that the manufacturer follows recognized quality management systems and meets specific requirements for product safety, performance, and reliability. Compliance with these standards provides assurance to customers regarding the motor’s quality.
  5. Reliability Testing: Manufacturers conduct extensive reliability testing to assess the motor’s performance under various conditions and stress factors. This may include accelerated life testing, temperature and humidity testing, thermal cycling, and load testing. Reliability testing helps identify potential weaknesses, evaluate the motor’s robustness, and ensure it can withstand real-world operating conditions without compromising performance or reliability.
  6. Continuous Improvement and Feedback: Manufacturers emphasize continuous improvement by gathering feedback from customers, field testing, and warranty analysis. By monitoring the performance of motors in real-world applications, manufacturers can identify any issues or failure patterns and make necessary design or process improvements. Customer feedback also plays a crucial role in driving improvements and addressing specific requirements.
  7. Quality Assurance and Documentation: Manufacturers maintain comprehensive documentation throughout the production process to ensure traceability and quality assurance. This includes recording and tracking raw materials, components, manufacturing parameters, inspections, and testing results. Proper documentation allows manufacturers to identify any deviations, track the motor’s history, and enable effective quality control and post-production analysis.
  8. Supplier Evaluation and Control: Manufacturers carefully evaluate and select reliable suppliers for motor components and materials. Supplier quality control processes are established to ensure that the sourced components meet the required specifications and quality standards. Regular supplier audits, inspections, and quality assessments are conducted to maintain a consistent supply chain and ensure the overall quality and reliability of the motors.

By implementing these measures, manufacturers ensure the quality and reliability of electric motors. Through robust design, stringent manufacturing processes, comprehensive testing, compliance with standards, continuous improvement, and effective quality control, manufacturers strive to deliver electric motors that meet or exceed customer expectations for performance, durability, and reliability.

electric motor

How do electric motors handle variations in voltage and frequency?

Electric motors are designed to handle variations in voltage and frequency to ensure proper operation and performance. The ability of electric motors to adapt to different voltage and frequency conditions depends on their design characteristics and the presence of additional control devices. Here’s a detailed explanation of how electric motors handle variations in voltage and frequency:

  1. Voltage Variations: Electric motors can handle certain variations in voltage without significant issues. The motor’s design factors in a voltage tolerance range to accommodate fluctuations in the power supply. However, excessive voltage variations beyond the motor’s tolerance can affect its performance and lead to problems such as overheating, increased energy consumption, and premature failure. To mitigate the impact of voltage variations, electric motors may incorporate the following features:
    • Voltage Regulation: Some electric motors, especially those used in industrial applications, may include voltage regulation mechanisms. These mechanisms help stabilize the motor’s voltage, compensating for slight voltage fluctuations and maintaining a relatively steady supply.
    • Voltage Protection Devices: Motor control circuits often incorporate protective devices such as voltage surge suppressors and voltage regulators. These devices help prevent voltage spikes and transient voltage variations from reaching the motor, safeguarding it against potential damage.
    • Voltage Monitoring: In certain applications, voltage monitoring systems may be employed to continuously monitor the motor’s supply voltage. If voltage variations exceed acceptable limits, the monitoring system can trigger alarms or take corrective actions, such as shutting down the motor to prevent damage.
  2. Frequency Variations: Electric motors are designed to operate at a specific frequency, typically 50 or 60 Hz, depending on the region. However, variations in the power system frequency can occur due to factors such as grid conditions or the use of frequency converters. Electric motors handle frequency variations in the following ways:
    • Constant Speed Motors: Most standard electric motors are designed for operation at a fixed speed corresponding to the rated frequency. When the frequency deviates from the rated value, the motor’s rotational speed changes proportionally. This can affect the motor’s performance, especially in applications where precise speed control is required.
    • Variable Frequency Drives (VFDs): Variable frequency drives are electronic devices that control the speed of an electric motor by varying the supplied frequency and voltage. VFDs allow electric motors to operate at different speeds and handle frequency variations effectively. By adjusting the frequency and voltage output, VFDs enable precise control of motor speed and torque, making them ideal for applications where speed control and energy efficiency are critical.
    • Inverter Duty Motors: Inverter duty motors are specifically designed to handle the frequency variations encountered when operated with VFDs. These motors feature improved insulation systems and robust designs to withstand the harmonic distortions and voltage spikes associated with VFD operation.
  3. Motor Protection: Electric motors may incorporate protective features to safeguard against adverse effects caused by voltage and frequency variations. These protection mechanisms include:
    • Thermal Protection: Motors often include built-in thermal protection devices such as thermal switches or sensors. These devices monitor the motor’s temperature and can automatically shut it down if it exceeds safe limits due to voltage or frequency variations that lead to excessive heating.
    • Overload Protection: Overload protection devices, such as overload relays, are employed to detect excessive currents drawn by the motor. If voltage or frequency variations cause the motor to draw abnormal currents, the overload protection device can interrupt the power supply to prevent damage.
    • Voltage/Frequency Monitoring: Advanced motor control systems may incorporate voltage and frequency monitoring capabilities. These systems continuously measure and analyze the motor’s supply voltage and frequency, providing real-time feedback on any deviations. If voltage or frequency variations exceed predetermined thresholds, the monitoring system can activate protective actions or trigger alarms for further investigation.

In summary, electric motors handle variations in voltage and frequency through design considerations, additional control devices, and protective mechanisms. Voltage variations are managed through voltage regulation, protective devices, and monitoring systems. Frequency variations can be accommodated by using variable frequency drives (VFDs) or employing inverter duty motors. Motor protection features, such as thermal protection and overload relays, help safeguard the motor against adverse effects caused by voltage and frequency variations. These measures ensure the reliable and efficient operation of electric motors under different voltage and frequency conditions.

electric motor

Can you explain the basic principles of electric motor operation?

An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:

  1. Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
  3. Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
  4. Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
  5. Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.

In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.

China best High Torque NEMA 17/23/34 Type 86bygh 450A/450b/450c Hybrid Stepper Motor Brushless Electric Motor BLDC Motor   with Great quality China best High Torque NEMA 17/23/34 Type 86bygh 450A/450b/450c Hybrid Stepper Motor Brushless Electric Motor BLDC Motor   with Great quality
editor by CX 2024-04-26

China Best Sales 24V 48V Motor Brushless Motor BLDC Motor Electrical Motor DC Motor China Motor Brushed Motor AC Motor Electric Motor Fan Motor Air Purifier Motor Micro Motor with Best Sales

Product Description

Product Description

BLDC Motor is featured with electronically commutation, extremely wide speed range and an outstandingly long life span, and  mainly used in applications that low noise and low vibration is a prime requirement, such as consumer robot, coffee grinder, fan&air purifier, vacuum & blower ,etc.

In such cases, CJC’s outer rotor motors are for your products: You prefer motor carrys higher inertia and builds higher force. You are looking for high motor power with low energy consumption but with a compact size.
 

BL6130M24 is most suitable for stirring, vertical grinding and other low-speed vertical installation equipment with soft start, such as coffee makers, meat grinders, as well as creative new product, such as scooter board, massage gun, outboard wheels, strength loader for fitness.

Please consider the following requirements before requesting customization: motor size, controller, motor ratings, gearbox(if any), or other significant factors. The following parameters for your reference, we could customize motor for your applications.

Parameters:
 

Rated Current 1.2A Rated Speed 1200RPM No-load Speed 2000-4000RPM Outer Diamter φ61mm
Rated Power 20-40W Rated Voltage DC12V/24V Torque  150m.NM Length 30mm

Drawing:

Characteridtics Of BLDC Motor

Innovative Product Display

Product Usage

Company Profile

Certifications

Exhibition

FAQ

 

Q: Can I visit your factory before we place the order?
A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical  answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please 
contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other    shipping way. Please contact us if you need other shipping 
way before shipment.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6
Samples:
US$ 9.9/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do manufacturers ensure the quality and reliability of electric motors?

Manufacturers employ several measures and quality control processes to ensure the quality and reliability of electric motors. These measures span from design and manufacturing stages to testing and inspections. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of electric motors:

  1. Robust Design and Engineering: Manufacturers invest significant effort in designing electric motors with robust engineering principles. This involves careful selection of materials, precise calculations, and simulation techniques to ensure optimal performance and durability. Thorough design reviews and analysis are conducted to identify potential issues and optimize the motor’s design for reliability.
  2. Stringent Manufacturing Processes: Manufacturers adhere to stringent manufacturing processes to maintain consistent quality standards. This includes using advanced manufacturing technologies, automated assembly lines, and precision machining to ensure accurate and reliable motor production. Strict quality control measures are implemented at each stage of manufacturing, including material inspection, component testing, and assembly verification.
  3. Quality Control and Testing: Comprehensive quality control and testing procedures are implemented to assess the performance and reliability of electric motors. This includes electrical testing to verify motor characteristics such as voltage, current, power consumption, and efficiency. Mechanical testing is conducted to assess factors like torque, vibration, and noise levels. Additionally, endurance tests are performed to evaluate the motor’s performance over extended operating periods.
  4. Certifications and Compliance: Electric motor manufacturers often obtain certifications and comply with industry standards to ensure quality and reliability. These certifications, such as ISO 9001, IEC standards, and UL certifications, demonstrate that the manufacturer follows recognized quality management systems and meets specific requirements for product safety, performance, and reliability. Compliance with these standards provides assurance to customers regarding the motor’s quality.
  5. Reliability Testing: Manufacturers conduct extensive reliability testing to assess the motor’s performance under various conditions and stress factors. This may include accelerated life testing, temperature and humidity testing, thermal cycling, and load testing. Reliability testing helps identify potential weaknesses, evaluate the motor’s robustness, and ensure it can withstand real-world operating conditions without compromising performance or reliability.
  6. Continuous Improvement and Feedback: Manufacturers emphasize continuous improvement by gathering feedback from customers, field testing, and warranty analysis. By monitoring the performance of motors in real-world applications, manufacturers can identify any issues or failure patterns and make necessary design or process improvements. Customer feedback also plays a crucial role in driving improvements and addressing specific requirements.
  7. Quality Assurance and Documentation: Manufacturers maintain comprehensive documentation throughout the production process to ensure traceability and quality assurance. This includes recording and tracking raw materials, components, manufacturing parameters, inspections, and testing results. Proper documentation allows manufacturers to identify any deviations, track the motor’s history, and enable effective quality control and post-production analysis.
  8. Supplier Evaluation and Control: Manufacturers carefully evaluate and select reliable suppliers for motor components and materials. Supplier quality control processes are established to ensure that the sourced components meet the required specifications and quality standards. Regular supplier audits, inspections, and quality assessments are conducted to maintain a consistent supply chain and ensure the overall quality and reliability of the motors.

By implementing these measures, manufacturers ensure the quality and reliability of electric motors. Through robust design, stringent manufacturing processes, comprehensive testing, compliance with standards, continuous improvement, and effective quality control, manufacturers strive to deliver electric motors that meet or exceed customer expectations for performance, durability, and reliability.

electric motor

What safety precautions should be followed when working with electric motors?

Working with electric motors requires adherence to specific safety precautions to ensure the well-being of individuals and prevent accidents. Electric motors involve electrical hazards that can cause electric shock, burns, or other injuries if proper safety measures are not followed. Here’s a detailed explanation of the safety precautions that should be followed when working with electric motors:

  1. Qualified Personnel: It is important to assign work on electric motors to qualified personnel who have the necessary knowledge, training, and experience in electrical systems and motor operation. Qualified electricians or technicians should handle installation, maintenance, and repairs involving electric motors.
  2. De-Energization and Lockout/Tagout: Before performing any work on electric motors, they should be de-energized, and appropriate lockout/tagout procedures should be followed. This involves isolating the motor from the power source, ensuring that it cannot be energized accidentally. Lockout/tagout procedures help prevent unexpected startup and protect workers from electrical hazards.
  3. Personal Protective Equipment (PPE): When working with electric motors, appropriate personal protective equipment should be worn. This may include insulated gloves, safety glasses, protective clothing, and footwear with electrical insulation. PPE helps protect against potential electrical shocks, burns, and other physical hazards.
  4. Inspection and Maintenance: Regular inspection and maintenance of electric motors are essential to identify potential issues or defects that could compromise safety. This includes checking for loose connections, damaged insulation, worn-out components, or overheating. Any defects or abnormalities should be addressed promptly by qualified personnel.
  5. Proper Grounding: Electric motors should be properly grounded to prevent electrical shock hazards. Grounding ensures that any fault currents are redirected safely to the ground, reducing the risk of electric shock to individuals working on or around the motor.
  6. Avoiding Wet Conditions: Electric motors should not be operated or worked on in wet or damp conditions unless they are specifically designed for such environments. Water or moisture increases the risk of electrical shock. If working in wet conditions is necessary, appropriate safety measures and equipment, such as waterproof PPE, should be used.
  7. Safe Electrical Connections: When connecting or disconnecting electric motors, proper electrical connections should be made. This includes ensuring that power is completely switched off, using appropriate tools and techniques for making connections, and tightening electrical terminals securely. Loose or faulty connections can lead to electrical hazards, overheating, or equipment failure.
  8. Awareness of Capacitors: Some electric motors contain capacitors that store electrical energy even when the motor is de-energized. These capacitors can discharge unexpectedly and cause electric shock. Therefore, it is important to discharge capacitors safely before working on the motor and to be cautious of potential residual energy even after de-energization.
  9. Training and Knowledge: Individuals working with electric motors should receive proper training and have a good understanding of electrical safety practices and procedures. They should be knowledgeable about the potential hazards associated with electric motors and know how to respond to emergencies, such as electrical shocks or fires.
  10. Adherence to Regulations and Standards: Safety precautions should align with relevant regulations, codes, and standards specific to electrical work and motor operation. These may include local electrical codes, occupational safety guidelines, and industry-specific standards. Compliance with these regulations helps ensure a safe working environment.

It is crucial to prioritize safety when working with electric motors. Following these safety precautions, along with any additional guidelines provided by equipment manufacturers or local regulations, helps minimize the risk of electrical accidents, injuries, and property damage. Regular training, awareness, and a safety-focused mindset contribute to a safer working environment when dealing with electric motors.

electric motor

What are the different types of electric motors available?

There are various types of electric motors available, each designed for specific applications and operating principles. These motors differ in their construction, power sources, and performance characteristics. Here is an overview of some common types of electric motors:

  1. DC Motors: DC (Direct Current) motors are widely used and come in different configurations. The most common types include brushed DC motors and brushless DC motors. Brushed DC motors use brushes and a commutator to switch the direction of current in the rotor, while brushless DC motors use electronic commutation. DC motors offer good speed control and torque characteristics, making them suitable for applications like robotics, electric vehicles, and small appliances.
  2. AC Motors: AC (Alternating Current) motors are classified into several types, including induction motors, synchronous motors, and universal motors. Induction motors are popular for their simplicity and reliability. They operate based on electromagnetic induction and are commonly used in industrial and residential applications. Synchronous motors operate at a constant speed and are often used in applications that require precise control, such as industrial machinery and synchronous clocks. Universal motors are designed to operate on both AC and DC power sources and are commonly found in household appliances like vacuum cleaners and power tools.
  3. Stepper Motors: Stepper motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning. They are often used in robotics, 3D printers, CNC machines, and other automated systems. Stepper motors are available in various configurations, including permanent magnet stepper motors, variable reluctance stepper motors, and hybrid stepper motors.
  4. Servo Motors: Servo motors are a type of motor that combines a DC motor with a feedback control mechanism. They are known for their precise control over position, velocity, and acceleration. Servo motors are commonly used in robotics, industrial automation, and applications that require accurate motion control, such as robotic arms, RC vehicles, and camera gimbals.
  5. Linear Motors: Linear motors are designed to produce linear motion instead of rotational motion. They operate on similar principles as rotary motors but with a different mechanical arrangement. Linear motors find applications in high-speed transportation systems, cutting machines, and other systems that require linear motion without the need for mechanical conversion from rotary to linear motion.
  6. Haptic Motors: Haptic motors, also known as vibration motors, are small motors used to create tactile feedback or vibrations in electronic devices. They are commonly found in smartphones, game controllers, wearable devices, and other gadgets that require haptic feedback to enhance the user experience.

These are just a few examples of the different types of electric motors available. Each type has its own advantages, limitations, and specific applications. The selection of an electric motor depends on factors such as the required torque, speed, control, efficiency, and the specific needs of the application at hand.

China Best Sales 24V 48V Motor Brushless Motor BLDC Motor Electrical Motor DC Motor China Motor Brushed Motor AC Motor Electric Motor Fan Motor Air Purifier Motor Micro Motor   with Best Sales China Best Sales 24V 48V Motor Brushless Motor BLDC Motor Electrical Motor DC Motor China Motor Brushed Motor AC Motor Electric Motor Fan Motor Air Purifier Motor Micro Motor   with Best Sales
editor by CX 2024-04-19

China wholesaler Long Life Good Service trolling Brushless Gearmotor electric car DC motor vacuum pump engine

Product Description

 

Detailed Photos

Product Type And Code Define

Product Parameters

Other Related Products

Click here to find what you are looking for:

Customized Product Service

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you ! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Excitation Mode: Shunt
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4
Customization:
Available

|

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

Can electric motors be used in renewable energy systems like wind turbines?

Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:

Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:

  1. Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
  2. Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
  3. Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
  4. Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
  5. Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.

Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.

Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.

electric motor

How do electric motors generate motion and mechanical work?

Electric motors generate motion and mechanical work through the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors accomplish this:

  1. Magnetic Fields: Electric motors consist of a stationary part called the stator and a rotating part called the rotor. The stator contains coils of wire that are supplied with an electric current, creating a magnetic field around them. The rotor, on the other hand, typically has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor creates a rotational force, also known as torque. This torque causes the rotor to start rotating.
  3. Electromagnetic Induction: In certain types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current (AC) is supplied to the stator, it creates a changing magnetic field. This changing magnetic field induces voltage in the rotor, which leads to the flow of current in the rotor. The current in the rotor produces its own magnetic field, and the interaction between the stator’s magnetic field and the rotor’s magnetic field results in rotation.
  4. Commutation: In motors that use direct current (DC), such as brushed DC motors, commutation is employed. Commutation is the process of reversing the direction of current in the rotor’s electromagnets as the rotor rotates. This is done using a component called a commutator, which ensures that the magnetic fields of the rotor and the stator are always properly aligned. By periodically reversing the current, the commutator allows for continuous rotation.
  5. Conversion of Electrical Energy to Mechanical Energy: As the rotor rotates, the mechanical energy is produced. The rotational motion of the rotor is transferred to the motor’s output shaft, which is connected to the load or the device that needs to be driven. The mechanical work is performed as the output shaft drives the load, such as spinning a fan blade, rotating a conveyor belt, or powering a machine.

In summary, electric motors generate motion and mechanical work by utilizing the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. The electric current flowing through the stator’s coils creates a magnetic field that interacts with the magnetic field of the rotor, producing torque and initiating rotation. In some motors, electromagnetic induction is employed, where a changing magnetic field induces voltage and current in the rotor, leading to rotation. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft, enabling the motor to perform mechanical work by driving the load.

China wholesaler Long Life Good Service trolling Brushless Gearmotor electric car DC motor   vacuum pump engine	China wholesaler Long Life Good Service trolling Brushless Gearmotor electric car DC motor   vacuum pump engine
editor by CX 2024-04-10

China factory 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window vacuum pump oil near me

Product Description

Product Description

In such cases, BLDC Motor with Planetary Gear Box is appropriate for your products: Your projects require self locking and more running & holding torque. You are looking to exact position control on your mechanical products.

BLDC Motor BL42R50M12 with Planetary Gear Box is recommended for projects involving smart products and medical equipment, such as door opener, foldable fitness equipment, smart switch, servo motors and etc.

Please consider the following requirements before requesting customization: speed, holding torque, space available in your product, or other significant factors.

We offer various customization options to meet specific needs:
-Wider supply voltage range, additional voltage types,
-Extended temperature range, suitable for low and high-temperature environments
-Suitable for vacuum environments
-Modified for high-speed or high-load applications
-Motors that meet increased electrical or mechanical tolerance requirements

-Configurable shaft length and second shaft end -Modified shaft sizes and gear configurations

Drawing:

Characteristic of BLDC Motor

Innovative Product Display

Product Usage

Company Profile

Certifications

Exhibition

FAQ

FAQ
Q: Can I visit your factory before we place the order?

A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical  answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please 
contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other shipping way. 
Please contact us if you need other shipping  way before shipment.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2-6
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

Can electric motors be adapted for use in both residential and industrial settings?

Yes, electric motors can be adapted for use in both residential and industrial settings. Their versatility, efficiency, and wide range of power options make them suitable for various applications in both environments. Here’s a detailed explanation of how electric motors can be adapted for use in residential and industrial settings:

  1. Residential Applications: Electric motors find numerous applications in residential settings, where their compact size, quiet operation, and energy efficiency are highly valued. Some common residential uses of electric motors include:
    • Home Appliances: Electric motors power a wide range of home appliances such as refrigerators, washing machines, dishwashers, vacuum cleaners, fans, and air conditioners. These motors are designed to provide efficient and reliable operation while minimizing noise and energy consumption.
    • Garage Door Openers: Electric motors are commonly used in residential garage door openers, providing convenient and automated access to the garage.
    • HVAC Systems: Electric motors drive the fans and compressors in heating, ventilation, and air conditioning (HVAC) systems, contributing to efficient climate control and indoor comfort.
    • Pool Pumps: Electric motors power pool pumps, circulating water and maintaining water quality in residential swimming pools.
    • Power Tools: Electric motors are integral components of various power tools used in residential settings, including drills, saws, and trimmers.
  2. Industrial Applications: Electric motors are extensively used in industrial settings due to their reliability, controllability, and adaptability to various industrial processes. Some common industrial applications of electric motors include:
    • Manufacturing Machinery: Electric motors drive a wide range of manufacturing machinery, including conveyor systems, pumps, compressors, mixers, and agitators. These motors are capable of providing precise speed and torque control, enhancing productivity and process efficiency.
    • Industrial Fans and Blowers: Electric motors power fans and blowers for ventilation, cooling, and air circulation in industrial facilities, contributing to a comfortable and safe working environment.
    • Machine Tools: Electric motors drive machine tools such as lathes, milling machines, and grinders, enabling precision machining operations in industrial manufacturing processes.
    • Material Handling Equipment: Electric motors are widely used in material handling equipment such as forklifts, conveyor systems, and hoists, facilitating efficient movement and transportation of goods within industrial facilities.
    • Pumps and Compressors: Electric motors power pumps and compressors in industrial applications, such as water supply systems, HVAC systems, and pneumatic systems.
  3. Adaptability and Customization: Electric motors can be adapted and customized to meet specific requirements in both residential and industrial settings. They are available in a wide range of sizes, power ratings, and configurations to accommodate diverse applications. Motors can be designed for different voltages, frequencies, and environmental conditions, allowing for seamless integration into various systems and equipment. Additionally, advancements in motor control technologies, such as variable frequency drives (VFDs), enable precise speed and torque control, making electric motors highly versatile and adaptable to different operational needs.
  4. Energy Efficiency and Environmental Benefits: The use of electric motors in both residential and industrial settings offers significant energy efficiency advantages. Electric motors have higher efficiency compared to other types of motors, resulting in reduced energy consumption and operational costs. Furthermore, electric motors produce zero direct emissions at the point of use, contributing to a cleaner and more sustainable environment. In residential settings, energy-efficient electric motors in appliances and HVAC systems help homeowners reduce their energy bills and minimize their carbon footprint. In industrial applications, the adoption of electric motors supports energy conservation initiatives and aligns with sustainability goals.

In summary, electric motors are adaptable for use in both residential and industrial settings. Their compact size, energy efficiency, controllability, and versatility make them suitable for a wide range of applications, from home appliances and garage door openers to manufacturing machinery and material handling equipment. The use of electric motors brings benefits such as improved energy efficiency, reduced emissions, quieter operation, and enhanced control, contributing to the efficiency and sustainability of residential and industrial operations.

electric motor

What advancements in electric motor technology have improved energy efficiency?

Advancements in electric motor technology have played a crucial role in improving energy efficiency, leading to more sustainable and environmentally friendly applications. Here’s a detailed explanation of some key advancements in electric motor technology that have contributed to enhanced energy efficiency:

  1. High-Efficiency Motor Designs: One significant advancement in electric motor technology is the development of high-efficiency motor designs. These designs focus on reducing energy losses during motor operation, resulting in improved overall efficiency. High-efficiency motors are engineered with optimized stator and rotor geometries, reduced core losses, and improved magnetic materials. These design enhancements minimize energy wastage and increase the motor’s efficiency, allowing it to convert a higher percentage of electrical input power into useful mechanical output power.
  2. Premium Efficiency Standards: Another notable advancement is the establishment and adoption of premium efficiency standards for electric motors. These standards, such as the International Electrotechnical Commission (IEC) IE3 and NEMA Premium efficiency standards, set minimum efficiency requirements for motors. Manufacturers strive to meet or exceed these standards by incorporating innovative technologies and design features that enhance energy efficiency. The implementation of premium efficiency standards has led to the widespread availability of more efficient motors in the market, encouraging energy-conscious choices and reducing energy consumption in various applications.
  3. Variable Speed Drives: Electric motor systems often operate under varying load conditions, and traditional motor designs operate at a fixed speed. However, the development and adoption of variable speed drives (VSDs) have revolutionized motor efficiency. VSDs, such as frequency converters or inverters, allow the motor’s speed to be adjusted according to the load requirements. By operating motors at the optimal speed for each task, VSDs minimize energy losses and significantly improve energy efficiency. This technology is particularly beneficial in applications with variable loads, such as HVAC systems, pumps, and conveyors.
  4. Improved Motor Control and Control Algorithms: Advanced motor control techniques and algorithms have contributed to improved energy efficiency. These control systems employ sophisticated algorithms to optimize motor performance, including speed control, torque control, and power factor correction. By precisely adjusting motor parameters based on real-time operating conditions, these control systems minimize energy losses and maximize motor efficiency. Additionally, the integration of sensor technology and feedback loops enables closed-loop control, allowing motors to respond dynamically and adaptively to changes in load demand, further enhancing energy efficiency.
  5. Use of Permanent Magnet Motors: Permanent magnet (PM) motors have gained popularity due to their inherent high energy efficiency. PM motors utilize permanent magnets in the rotor, eliminating the need for rotor windings and reducing rotor losses. This design enables PM motors to achieve higher power densities, improved efficiency, and enhanced performance compared to traditional induction motors. The use of PM motors is particularly prevalent in applications where high efficiency and compact size are critical, such as electric vehicles, appliances, and industrial machinery.
  6. Integration of Advanced Materials: Advances in materials science have contributed to improved motor efficiency. The utilization of advanced magnetic materials, such as rare-earth magnets, allows for stronger and more efficient magnetic fields, resulting in higher motor efficiency. Additionally, the development of low-loss electrical steel laminations and improved insulation materials reduces core losses and minimizes energy wastage. These advanced materials enhance the overall efficiency of electric motors, making them more energy-efficient and environmentally friendly.

The advancements in electric motor technology, including high-efficiency motor designs, premium efficiency standards, variable speed drives, improved motor control, permanent magnet motors, and advanced materials, have collectively driven significant improvements in energy efficiency. These advancements have led to more efficient motor systems, reduced energy consumption, and increased sustainability across a wide range of applications, including industrial machinery, transportation, HVAC systems, appliances, and renewable energy systems.

electric motor

Can you explain the basic principles of electric motor operation?

An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:

  1. Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
  3. Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
  4. Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
  5. Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.

In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.

China factory 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window   vacuum pump oil near me		China factory 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window   vacuum pump oil near me
editor by CX 2024-04-03

China factory 6.5inch 250W 24V DC 120kg Load Brushless Electric Wheel Hub Servo Motor with Hot selling

Product Description

High precision 6.5inch 250W 24V 36V 48V DC 120kg load 600RPM brushless electric wheel hub servo motor with incremental encoder for smart forklift

 Parameters                                                                                                                          

Outside Diameter

6.5 inch

Voltage

36/48V

Encoder

1571 line Incremental Photoelectric Encoder

Efficiency

≥85%

Power type

DC motor

Carrying weight

≤120KG

Shaft connection

thread

Brake method

electric brake

Excitation mode

permanent magnet type

Tyre form

with pattern

Protection mode

IP54

Environment temperature

-10 ~ +40 degree centigrade

Our hub servo motor advantage

  • Self R & D, have own patent and great market competitiveness

  • Built-in high precision encoder 12-21 bits optional, also can be customized, electric brake, high load carrying etc
  • Simple structure, easy installation and high cost performance
  • High precision, high power density, low noise, efficient and durable
  • The motor and the outer tyre are integrated, beautiful design
  • 4-16 inch optional, power: 50-2KW optional, accept OEM/OEM for all models

Detailed pictures

Dimension of 6.5inch 36/48VDC 250W hub motor double shaft

Dimension of 6.5inch 36/48VDC 250W hub motor single shaft

 

More AGV Robot dc hub servo motor

Application: service Robot, AGV

 

Patent for the servo hub motor

Packaging & Shipping

Package: carton with foam, quantity per carton will depend on the hub motor size.

Shipping: goods will be deliveried by air(EMS, DHL, FedEx,TNT etc), by train or by boat according to your requirements.

 

Company Information

1. Brief introduction:

    HangZhou CHINAMFG Technology Co., Ltd. is a high-tech enterprise specialized in R&D, production and sales of industrial automation transmission products; The company gathered a large number of R&D elites being engaged in motion control field for more than 10 years and constantly provide cost-effective motion control products for our partners.
2. Product ranges and application:

   Robot Hub Servo Motor, Digital Stepper Driver, Closed Loop Stepper Driver, Low-voltage DC Servo Driver and Stepper Motor, Multi-axis Motion Controller etc.. And widely used in hundreds of industries like Electronics, Machinery, Measurement, Laser, Medical, Textile, Packaging, LDE equipment, Channel CHINAMFG and Advertising etc.. Our products has win great popularity in global and been exported to global market like Southeast Asia, Europe and the United States etc. 
3. Our service philosophy:  Create value for customers.

4. Core value: Dedicated, innovative, virtuous, and pragmatic

5. Our vision: Being the most professional brand in the field of automation control, serving the global industry

 

About CHINAMFG products on Exhibition

 

Contact
 

FAQ

 1. Factory or trader?
We are factory, and have professional R&D team as introduced in company information.
2. How about the delivery?
– Sample: 3-5 days.
– Bulk order: 15-30 days.

3. What is your after-sales services?
1. Free maintenance within 12 months guarantee, lifetime consultant.
2. Professional solutions in installation and maintence.
4. Why choose us?
1. Factory Price & 24/7 after-sale services.
2. From mold customization to material processing and welding, from fine components to finished assembly, 72 processes, 24 control points, strict aging, finished product inspection.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Household Appliances, Agv, Robot
Operating Speed: Low Speed
Excitation Mode: Permanent-Magnet
Samples:
US$ 102/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

Can you provide examples of machinery or equipment that rely on electric motors?

Electric motors are extensively used in various machinery and equipment across different industries. They play a crucial role in converting electrical energy into mechanical energy to power a wide range of applications. Here are some examples of machinery and equipment that heavily rely on electric motors:

  • Industrial Machinery: Electric motors are found in numerous industrial machinery and equipment, such as pumps, compressors, fans, conveyors, agitators, mixers, and machine tools. These motors provide the necessary power for moving fluids, gases, and materials, as well as driving mechanical processes in manufacturing, mining, construction, and other industrial applications.
  • Electric Vehicles: Electric motors are the primary propulsion system in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They provide the power needed to drive the wheels and propel the vehicle. Electric motors in EVs and HEVs offer high efficiency, instant torque, and regenerative braking capabilities, contributing to the advancement of sustainable transportation.
  • Household Appliances: Many household appliances rely on electric motors for their operation. Examples include refrigerators, air conditioners, washing machines, dishwashers, vacuum cleaners, blenders, and electric fans. Electric motors enable the movement, cooling, or mechanical functions in these appliances, enhancing convenience and efficiency in daily household tasks.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for various functions. Motors power the fans in air handling units, circulate air through ducts, and drive compressors in air conditioning and refrigeration systems. Electric motors in HVAC systems contribute to efficient temperature control and air circulation in residential, commercial, and industrial buildings.
  • Medical Equipment: Electric motors are essential components in a wide array of medical equipment. Examples include MRI machines, X-ray machines, CT scanners, surgical robots, dental drills, infusion pumps, and patient lifts. These motors enable precise movements, imaging capabilities, and mechanical functions in medical devices, supporting diagnostics, treatment, and patient care.
  • Power Tools: Electric motors are commonly used in power tools such as drills, saws, grinders, sanders, and routers. They provide the rotational force and power required for cutting, shaping, drilling, and other tasks. Electric motors in power tools offer portability, ease of use, and consistent performance for both professional and DIY applications.
  • Aircraft Systems: Electric motors are increasingly utilized in aircraft systems. They power various components, including landing gear actuation systems, fuel pumps, hydraulic systems, and cabin air circulation systems. Electric motors in aircraft contribute to weight reduction, energy efficiency, and improved reliability compared to traditional hydraulic or pneumatic systems.

These examples represent just a fraction of the machinery and equipment that rely on electric motors. From industrial applications to household appliances and transportation systems, electric motors are integral to modern technology, providing efficient and reliable mechanical power for a wide range of purposes.

electric motor

Are there any emerging trends in electric motor technology, such as smart features?

Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:

  1. Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
  2. Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
  3. Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
  4. Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
  5. Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
  6. Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.

The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.

electric motor

What are the different types of electric motors available?

There are various types of electric motors available, each designed for specific applications and operating principles. These motors differ in their construction, power sources, and performance characteristics. Here is an overview of some common types of electric motors:

  1. DC Motors: DC (Direct Current) motors are widely used and come in different configurations. The most common types include brushed DC motors and brushless DC motors. Brushed DC motors use brushes and a commutator to switch the direction of current in the rotor, while brushless DC motors use electronic commutation. DC motors offer good speed control and torque characteristics, making them suitable for applications like robotics, electric vehicles, and small appliances.
  2. AC Motors: AC (Alternating Current) motors are classified into several types, including induction motors, synchronous motors, and universal motors. Induction motors are popular for their simplicity and reliability. They operate based on electromagnetic induction and are commonly used in industrial and residential applications. Synchronous motors operate at a constant speed and are often used in applications that require precise control, such as industrial machinery and synchronous clocks. Universal motors are designed to operate on both AC and DC power sources and are commonly found in household appliances like vacuum cleaners and power tools.
  3. Stepper Motors: Stepper motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning. They are often used in robotics, 3D printers, CNC machines, and other automated systems. Stepper motors are available in various configurations, including permanent magnet stepper motors, variable reluctance stepper motors, and hybrid stepper motors.
  4. Servo Motors: Servo motors are a type of motor that combines a DC motor with a feedback control mechanism. They are known for their precise control over position, velocity, and acceleration. Servo motors are commonly used in robotics, industrial automation, and applications that require accurate motion control, such as robotic arms, RC vehicles, and camera gimbals.
  5. Linear Motors: Linear motors are designed to produce linear motion instead of rotational motion. They operate on similar principles as rotary motors but with a different mechanical arrangement. Linear motors find applications in high-speed transportation systems, cutting machines, and other systems that require linear motion without the need for mechanical conversion from rotary to linear motion.
  6. Haptic Motors: Haptic motors, also known as vibration motors, are small motors used to create tactile feedback or vibrations in electronic devices. They are commonly found in smartphones, game controllers, wearable devices, and other gadgets that require haptic feedback to enhance the user experience.

These are just a few examples of the different types of electric motors available. Each type has its own advantages, limitations, and specific applications. The selection of an electric motor depends on factors such as the required torque, speed, control, efficiency, and the specific needs of the application at hand.

China factory 6.5inch 250W 24V DC 120kg Load Brushless Electric Wheel Hub Servo Motor   with Hot selling	China factory 6.5inch 250W 24V DC 120kg Load Brushless Electric Wheel Hub Servo Motor   with Hot selling
editor by CX 2024-03-29

China Good quality 12V 24V 48V 72V 310V 90nm 80 Rpm 60rpm 1kw Brushless DC Worm Gear Electric Motor a/c vacuum pump

Product Description

Product Description

Feature:
A. High power range from 50W to 2KW
B. Dia: 57mm-110mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
K.High-performance and stable matching driver and controller

Kindly remind: As different customers may need different motor parameter for fitting your equipment. If below motor can’t fit your need, please kindly send inquiry to us with information for rated power or torque,rated speed, and rated voltage for our new size drawing making for you. CLICK HERE to contact me. Thanks a lot!
Δ 86mm BLDC Motor with RV40 Worm Gearbox Size Dimensions
Dimensions (Unit: mm )
Mounting screws are included with gear head.

Δ Brushless DC Motor Specification:

Motor Power (W)

600

1000

1500

Motor Length(mm)

123

153

183

Motor Rated Speed(rpm)

2000

Δ RV63 Worm Gearbox Specification:

Gear Ratio 7.5 10 15 20 25 30 40 50 60 80 100
Rated output speed(rpm) 267 200 133 100 80 67 50 40 33 25 20
Rated Torque(N.m)  28.7 38.2 57.3 74.5 90.7 106 133.7 124 94 115 87

Other Specification form:
Δ Motor interface, Voltage, Speed can be customized.

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

 

More Motor Flange Size

Δ More Motor Flange Size to choose, if you need other size. Welcome to contact us to custom.

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 275.4/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

How do electric motors handle variations in load, speed, and torque?

Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:

  1. Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
  2. Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
  3. Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
  4. Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.

In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.

China Good quality 12V 24V 48V 72V 310V 90nm 80 Rpm 60rpm 1kw Brushless DC Worm Gear Electric Motor   a/c vacuum pump		China Good quality 12V 24V 48V 72V 310V 90nm 80 Rpm 60rpm 1kw Brushless DC Worm Gear Electric Motor   a/c vacuum pump
editor by CX 2024-03-29

China high quality 4inch 24V DC 280rpm 3n. M Brushless Electric Wheel Hub Motor vacuum pump belt

Product Description

4 inch small size 24V DC 280RPM 3N.m brushless electric wheel hub motor for AGV robot

 Parameters                                                                                                                          

Outside Diameter

4.0 inch

Voltage

24V

Encoder

1571 line Incremental Photoelectric Encoder

Efficiency

≥85%

Power type

DC motor

Carrying weight

≤50KG

Shaft connection

thread

Brake method

electric brake

Excitation mode

permanent magnet type

Tyre form

with pattern

Protection mode

IP54

Environment temperature

-10 ~ +40 degree centigrade

Our hub servo motor advantage

  • Self R & D, have own patent and great market competitiveness

  • Built-in high precision encoder 12-21 bits optional, also can be customized, electric brake, high load carrying etc
  • Simple structure, easy installation and high cost performance
  • High precision, high power density, low noise, efficient and durable
  • The motor and the outer tyre are integrated, beautiful design
  • 4-16 inch optional, power: 50-2KW optional, accept OEM/OEM for all models

Detailed pictures

Dimension of 4inch 24VDC 100W hub motor double shaft
Dimension of 4inch 24VDC 100W hub motor single shaft

 

More AGV Robot DC hub servo motor

Application: service Robot, AGV

 

Patent for the servo hub motor

Packaging & Shipping

Package: carton with foam, quantity per carton will depend on the hub motor size.

Shipping: goods will be deliveried by air(EMS, DHL, FedEx,TNT etc), by train or by boat according to your requirements.

 

Company Information

1. Brief introduction:

    HangZhou CHINAMFG Technology Co., Ltd. is a high-tech enterprise specialized in R&D, production and sales of industrial automation transmission products; The company gathered a large number of R&D elites being engaged in motion control field for more than 10 years and constantly provide cost-effective motion control products for our partners.
2. Product ranges and application:

   Robot Hub Servo Motor, Digital Stepper Driver, Closed Loop Stepper Driver, Low-voltage DC Servo Driver and Stepper Motor, Multi-axis Motion Controller etc.. And widely used in hundreds of industries like Electronics, Machinery, Measurement, Laser, Medical, Textile, Packaging, LDE equipment, Channel CHINAMFG and Advertising etc.. Our products has win great popularity in global and been exported to global market like Southeast Asia, Europe and the United States etc. 
3. Our service philosophy:  Create value for customers.

4. Core value: Dedicated, innovative, virtuous, and pragmatic

5. Our vision: Being the most professional brand in the field of automation control, serving the global industry

 

About CHINAMFG products on Exhibition

 

Contact
 

FAQ

 1. Factory or trader?
We are factory, and have professional R&D team as introduced in company information.
2. How about the delivery?
– Sample: 3-5 days.
– Bulk order: 15-30 days.

3. What is your after-sales services?
1. Free maintenance within 12 months guarantee, lifetime consultant.
2. Professional solutions in installation and maintence.
4. Why choose us?
1. Factory Price & 24/7 after-sale services.
2. From mold customization to material processing and welding, from fine components to finished assembly, 72 processes, 24 control points, strict aging, finished product inspection.

Application: Industrial, Agv, Robot
Operating Speed: Low Speed
Excitation Mode: Permanent-Magnet
Samples:
US$ 99/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

Can you provide examples of machinery or equipment that rely on electric motors?

Electric motors are extensively used in various machinery and equipment across different industries. They play a crucial role in converting electrical energy into mechanical energy to power a wide range of applications. Here are some examples of machinery and equipment that heavily rely on electric motors:

  • Industrial Machinery: Electric motors are found in numerous industrial machinery and equipment, such as pumps, compressors, fans, conveyors, agitators, mixers, and machine tools. These motors provide the necessary power for moving fluids, gases, and materials, as well as driving mechanical processes in manufacturing, mining, construction, and other industrial applications.
  • Electric Vehicles: Electric motors are the primary propulsion system in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They provide the power needed to drive the wheels and propel the vehicle. Electric motors in EVs and HEVs offer high efficiency, instant torque, and regenerative braking capabilities, contributing to the advancement of sustainable transportation.
  • Household Appliances: Many household appliances rely on electric motors for their operation. Examples include refrigerators, air conditioners, washing machines, dishwashers, vacuum cleaners, blenders, and electric fans. Electric motors enable the movement, cooling, or mechanical functions in these appliances, enhancing convenience and efficiency in daily household tasks.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for various functions. Motors power the fans in air handling units, circulate air through ducts, and drive compressors in air conditioning and refrigeration systems. Electric motors in HVAC systems contribute to efficient temperature control and air circulation in residential, commercial, and industrial buildings.
  • Medical Equipment: Electric motors are essential components in a wide array of medical equipment. Examples include MRI machines, X-ray machines, CT scanners, surgical robots, dental drills, infusion pumps, and patient lifts. These motors enable precise movements, imaging capabilities, and mechanical functions in medical devices, supporting diagnostics, treatment, and patient care.
  • Power Tools: Electric motors are commonly used in power tools such as drills, saws, grinders, sanders, and routers. They provide the rotational force and power required for cutting, shaping, drilling, and other tasks. Electric motors in power tools offer portability, ease of use, and consistent performance for both professional and DIY applications.
  • Aircraft Systems: Electric motors are increasingly utilized in aircraft systems. They power various components, including landing gear actuation systems, fuel pumps, hydraulic systems, and cabin air circulation systems. Electric motors in aircraft contribute to weight reduction, energy efficiency, and improved reliability compared to traditional hydraulic or pneumatic systems.

These examples represent just a fraction of the machinery and equipment that rely on electric motors. From industrial applications to household appliances and transportation systems, electric motors are integral to modern technology, providing efficient and reliable mechanical power for a wide range of purposes.

electric motor

How do electric motors handle variations in voltage and frequency?

Electric motors are designed to handle variations in voltage and frequency to ensure proper operation and performance. The ability of electric motors to adapt to different voltage and frequency conditions depends on their design characteristics and the presence of additional control devices. Here’s a detailed explanation of how electric motors handle variations in voltage and frequency:

  1. Voltage Variations: Electric motors can handle certain variations in voltage without significant issues. The motor’s design factors in a voltage tolerance range to accommodate fluctuations in the power supply. However, excessive voltage variations beyond the motor’s tolerance can affect its performance and lead to problems such as overheating, increased energy consumption, and premature failure. To mitigate the impact of voltage variations, electric motors may incorporate the following features:
    • Voltage Regulation: Some electric motors, especially those used in industrial applications, may include voltage regulation mechanisms. These mechanisms help stabilize the motor’s voltage, compensating for slight voltage fluctuations and maintaining a relatively steady supply.
    • Voltage Protection Devices: Motor control circuits often incorporate protective devices such as voltage surge suppressors and voltage regulators. These devices help prevent voltage spikes and transient voltage variations from reaching the motor, safeguarding it against potential damage.
    • Voltage Monitoring: In certain applications, voltage monitoring systems may be employed to continuously monitor the motor’s supply voltage. If voltage variations exceed acceptable limits, the monitoring system can trigger alarms or take corrective actions, such as shutting down the motor to prevent damage.
  2. Frequency Variations: Electric motors are designed to operate at a specific frequency, typically 50 or 60 Hz, depending on the region. However, variations in the power system frequency can occur due to factors such as grid conditions or the use of frequency converters. Electric motors handle frequency variations in the following ways:
    • Constant Speed Motors: Most standard electric motors are designed for operation at a fixed speed corresponding to the rated frequency. When the frequency deviates from the rated value, the motor’s rotational speed changes proportionally. This can affect the motor’s performance, especially in applications where precise speed control is required.
    • Variable Frequency Drives (VFDs): Variable frequency drives are electronic devices that control the speed of an electric motor by varying the supplied frequency and voltage. VFDs allow electric motors to operate at different speeds and handle frequency variations effectively. By adjusting the frequency and voltage output, VFDs enable precise control of motor speed and torque, making them ideal for applications where speed control and energy efficiency are critical.
    • Inverter Duty Motors: Inverter duty motors are specifically designed to handle the frequency variations encountered when operated with VFDs. These motors feature improved insulation systems and robust designs to withstand the harmonic distortions and voltage spikes associated with VFD operation.
  3. Motor Protection: Electric motors may incorporate protective features to safeguard against adverse effects caused by voltage and frequency variations. These protection mechanisms include:
    • Thermal Protection: Motors often include built-in thermal protection devices such as thermal switches or sensors. These devices monitor the motor’s temperature and can automatically shut it down if it exceeds safe limits due to voltage or frequency variations that lead to excessive heating.
    • Overload Protection: Overload protection devices, such as overload relays, are employed to detect excessive currents drawn by the motor. If voltage or frequency variations cause the motor to draw abnormal currents, the overload protection device can interrupt the power supply to prevent damage.
    • Voltage/Frequency Monitoring: Advanced motor control systems may incorporate voltage and frequency monitoring capabilities. These systems continuously measure and analyze the motor’s supply voltage and frequency, providing real-time feedback on any deviations. If voltage or frequency variations exceed predetermined thresholds, the monitoring system can activate protective actions or trigger alarms for further investigation.

In summary, electric motors handle variations in voltage and frequency through design considerations, additional control devices, and protective mechanisms. Voltage variations are managed through voltage regulation, protective devices, and monitoring systems. Frequency variations can be accommodated by using variable frequency drives (VFDs) or employing inverter duty motors. Motor protection features, such as thermal protection and overload relays, help safeguard the motor against adverse effects caused by voltage and frequency variations. These measures ensure the reliable and efficient operation of electric motors under different voltage and frequency conditions.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China high quality 4inch 24V DC 280rpm 3n. M Brushless Electric Wheel Hub Motor   vacuum pump belt	China high quality 4inch 24V DC 280rpm 3n. M Brushless Electric Wheel Hub Motor   vacuum pump belt
editor by CX 2023-12-11

China wholesaler 70mm 1.2 2.2 Kw 36V 48V 20kg 25kg 80kv 130kv 160kv Underwater Thurster Electric Brushless DC Motor Underwater motor engine

Product Description

Product Description

DMKE-7092 Underwater Motor Size Dimensions

Dimensions (Unit: mm )
Mounting screws are included with gear head.

>>The Voltage, speed, thrust, waterproof depth customizable.

Contact us for your motor solution.

Model DMKE-7092 Rated speed 2880rpm Rated current 25A
Power 1200W-2200W Max Speed 5000rpm Max current 45A
Voltage 36-48V Protection Level IP68 KV 80, 130, 160KV

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

 

 

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 14 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking forward to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

Application: Universal, Industrial, Household Appliances, Power Tools, Pump
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 166.67/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

How to Select a Gear Motor

A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.

Angular geared motors

Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.

Planetary gearboxes

Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Motor

Hydraulic gear motors

Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Motor

Croise motors

There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.

China wholesaler 70mm 1.2 2.2 Kw 36V 48V 20kg 25kg 80kv 130kv 160kv Underwater Thurster Electric Brushless DC Motor Underwater   motor engine	China wholesaler 70mm 1.2 2.2 Kw 36V 48V 20kg 25kg 80kv 130kv 160kv Underwater Thurster Electric Brushless DC Motor Underwater   motor engine
editor by CX 2023-11-23

China Hot selling ZD 12V 24V 48V 10W-300W Round Flange Brushless Planetary Gear Motor With Gearbox ac motor

Product Description

Model Selection

       ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Product Parameters


Planetary Gear Motor

MOTOR FRAME SIZE 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm
MOTOR TYPE Brush or Brushless
OUTPUT POWER 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized)
Voltage type 12V,24V,48V
Accessories Electric Brake / Encoder
GEARBOX FRAME SIZE 32 mm / 42mm / 52mm / 62mm /72mm/82mm
Gear Ratio 3.65K-392.98K
Type Of Pinion GN Type / GU Type

Type Of Planetary Gear Motor

Other Products

Company Profile

 

Application: Universal, Industrial, Household Appliances
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Type: Z2
Customization:
Available

|

Customized Request

Motor

Benefits of a Planetary Motor

A planetary motor has many benefits. Its compact design and low noise makes it a good choice for any application. Among its many uses, planetary gear motors are found in smart cars, consumer electronics, intelligent robots, communication equipment, and medical technology. They can even be found in smart homes! Read on to discover the benefits of a planetary gear motor. You’ll be amazed at how versatile and useful it is!

Self-centering planet gears ensure a symmetrical force distribution

A planetary motor is a machine with multiple, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission size has no bearing on the output torque. A torsional stress analysis of the retaining structure for this type of motor found a maximum shear stress of 64 MPa, which is equivalent to a safety factor of 3.1 for 6061 aluminum. Self-centering planet gears are designed to ensure a symmetrical force distribution throughout the transmission system, with the weakest component being the pinions.
A planetary gearbox consists of ring and sun gears. The pitch diameters of ring and planet gears are nearly equal. The number of teeth on these gears determines the average gear-ratio per output revolution. This error is related to the manufacturing precision of the gears. The effect of this error is a noise or vibration characteristic of the planetary gearbox.
Another design for a planetary gearbox is a traction-based variant. This design eliminates the need for timing marks and other restrictive assembly conditions. The design of the ring gear is similar to that of a pencil sharpener mechanism. The ring gear is stationary while planet gears extend into cylindrical cutters. When placed on the sun’s axis, the pencil sharpening mechanism revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need for conventional planetary carriers and is mated with the self-centering planet gears by dual-function components. The dual-function components synchronize the rolling motion and traction of the gears. They also eliminate the need for a carrier and reduce the force distribution between the rotor and stator.

Metal gears

A planetary motor is a type of electric drive that uses a series of metal gears. These gears share a load attached to the output shaft to generate torque. The planetary motor is often CNC controlled, with extra-long shafts, which allow it to fit into very compact designs. These gears are available in sizes from seven millimeters to 12 millimeters. They can also be fitted with encoders.
Planetary gearing is widely used in various industrial applications, including automobile transmissions, off-road transmissions, and wheel drive motors. They are also used in bicycles to power the shift mechanism. Another use for planetary gearing is as a powertrain between an internal combustion engine and an electric motor. They are also used in forestry applications, such as debarking equipment and sawing. They can be used in other industries as well, such as pulp washers and asphalt mixers.
Planetary gear sets are composed of three types of gears: a sun gear, planet gears, and an outer ring. The sun gear transfers torque to the planet gears, and the planet gears mesh with the outer ring gear. Planet carriers are designed to deliver high-torque output at low speeds. These gears are mounted on carriers that are moved around the ring gear. The planet gears mesh with the ring gears, and the sun gear is mounted on a moveable carrier.
Plastic planetary gear motors are less expensive to produce than their metal counterparts. However, plastic gears suffer from reduced strength, rigidity, and load capacity. Metal gears are generally easier to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and less noisy. Some of the largest plastic planetary gear motors are made in collaboration with leading suppliers. When buying a plastic planetary gear motor, be sure to consider what materials it is made of.
Motor

Encoder

The Mega Torque Planetary Encoder DC Geared Motor is designed with a Japanese Mabuchi motor RS-775WC, a 200 RPM base motor. It is capable of achieving stall torque at low speeds, which is impossible to achieve with a simple DC motor. The planetary encoder provides five pulses per revolution, making it perfect for applications requiring precise torque or position. This motor requires an 8mm hex coupling for proper use.
This encoder has a high resolution and is suitable for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back signals. It can count paulses as the motor passes through a hall on the circuit board. Depending on the gearbox ratio, the encoder can provide up to two million transitions per rotation.
The planetary gear motor uses a planetary gear system to distribute torque in synchrony. This minimizes the risk of gear failure and increases the overall output capacity of the device. On the other hand, a spur gear motor is a simpler design and cheaper to produce. The spur gear motor works better for lower torque applications as each gear bears all the load. As such, the torque capacity of the spur gear motor is lower than that of a planetary gear motor.
The REV UltraPlanetary gearbox is designed for FTC and has three different output shaft options. The output shaft is made of 3/8-inch hex, allowing for flexible shaft replacement. These motors are a great value as they can be used to meet a wide range of power requirements. The REV UltraPlanetary gearbox and motor are available for very reasonable prices and a female 5mm hex output shaft can be used.

Durability

One of the most common questions when selecting a planetary motor is “How durable is it?” This is a question that’s often asked by people. The good news is that planetary motors are extremely durable and can last for a long time if properly maintained. For more information, read on! This article will cover the durability and efficiency of planetary gearmotors and how you can choose the best one for your needs.
First and foremost, planetary gear sets are made from metal materials. This increases their lifespan. The planetary gear set is typically made of metals such as nickel-steel and steel. Some planetary gear motors use plastic. Steel-cut gears are the most durable and suitable for applications that require more torque. Nickel-steel gears are less durable, but are better able to hold lubricant.
Durability of planetary motor gearbox is important for applications requiring high torque versus speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are expensive, but they are highly customizable. The planetary gearbox can be removed for maintenance and replacement if necessary. Parts for the gearbox can be purchased separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for understanding its durability. In previous studies, uncoupled and coupled meshing models were used to investigate the effect of various design parameters on the vibration characteristics of the planetary gear system. This analysis requires considering the role of the mesh stiffness, structure stiffness, and moment of inertia. Moreover, dynamic models for planetary gear transmission require modeling the influence of multiple parameters, such as mesh stiffness and shaft location.
Motor

Cost

The planetary gear motor has multiple contact points that help the rotor rotate at different speeds and torques. This design is often used in stirrers and large vats of liquid. This type of motor has a low initial cost and is more commonly found in low-torque applications. A planetary gear motor has multiple contact points and is more effective for applications requiring high torque. Gear motors are often found in stirring mechanisms and conveyor belts.
A planetary gearmotor is typically made from four mechanically linked rotors. They can be used for various applications, including automotive and laboratory automation. The plastic input stage gears reduce noise at higher speeds. Steel gears can be used for high torques and a modified lubricant is often added to reduce weight and mass moment of inertia. Its low-cost design makes it an excellent choice for robots and other applications.
There are many different types of planetary gear motors available. A planetary gear motor has three gears, the sun gear and planet gears, with each sharing equal amounts of work. They are ideal for applications requiring high torque and low-resistance operation, but they require more parts than their single-stage counterparts. The steel cut gears are the most durable, and are often used in applications that require high speeds. The nickel-steel gears are more absorptive, which makes them better for holding lubricant.
A planetary gear motor is a high-performance electrical vehicle motor. A typical planetary gear motor has a 3000 rpm speed, a peak torque of 0.32 Nm, and is available in 24V, 36V, and 48V power supply. It is also quiet and efficient, requiring little maintenance and offering greater torque to a modern electric car. If you are thinking of buying a planetary gear motor, be sure to do a bit of research before purchasing one.

China Hot selling ZD 12V 24V 48V 10W-300W Round Flange Brushless Planetary Gear Motor With Gearbox   ac motor	China Hot selling ZD 12V 24V 48V 10W-300W Round Flange Brushless Planetary Gear Motor With Gearbox   ac motor
editor by CX 2023-10-20