Tag Archives: single phase induction motor

China Hot selling China Ml 0.18kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw 3.7kw 4kw 5.5kw 7.5kw Single Phase Asynchronous Induction AC Electric Motor vacuum pump

Product Description

China ML 0.18kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw 3.7kw 4kw 5.5kw 7.5kw Single Phase Asynchronous Induction AC Electric Motor

Recommendation

 

 

Product Description

Model KW Currnet
(A)
Speed
(rpm)
Starting
Current(A)
Eff
(%)
Power Factor
(Φ)
Tn
(N.m)
Tst/Tn Tmax/In
ML-631-2 0.18 1.37 2710 8 63 0.9 0.63 2.5 1.6
ML-632-2 0.25 1.89 2710 10 64 0.9 0.88 2.5 1.6
ML-711-2 0.37 2.42 2780 15 70 0.95 1.27 2.5 1.7
ML-712-2 0.55 3.45 2790 20 73 0.95 1.88 2.5 1.7
ML-801-2 0.75 4.54 2800 30 74 0.97 2.59 2.5 1.7
ML-802-2 1.1 6.45 2810 40 76 0.97 3.74 2.5 1.7
ML-90S-2 1.5 8.62 2810 55 78 0.97 5.10 2.5 1.8
ML-90L-2 2.2 12.5 2810 75 79 0.97 7.48 2.2 1.8
ML-100L-2 3 16.6 2830 95 80 0.98 10.12 2.2 2
ML-112M1-2 3.7 21.48 2850 140 78 0.96 12.40 2.5 1.7
ML-112M2-2 4 22.18 285 150 80 0.98 13.41 2.5 1.7
                   
ML-631-4 0.12 1.04 1350 6 55 0.91 0.85 2.5 1.6
ML-632-4 0.18 1.54 1360 8.5 56 0.91 1.26 2.5 1.6
ML-711-4 0.25 1.94 1380 10 61 0.92 1.73 2.5 1.6
ML-712-4 0.37 2.8 1380 15 62.5 0.92 2.56 2.5 1.5
ML-801-4 0.55 3.8 1400 20 67 0.94 3.75 2.5 1.7
ML-802-4 0.75 4.75 1410 30 73 0.94 5.08 2.5 1.7
ML-90S-4 1.1 6.76 1410 40 74.5 0.95 7.45 2.2 1.8
ML-90L-4 1.5 9.03 1420 55 76 0.95 10.09 2.2 1.8
ML-100L1-4 2.2 12.6 1430 75 78 0.97 14.69 2.2 1.8
ML-100L2-4 3 17.02 1440 95 79 0.97 19.90 2.2 1.8
ML-112M1-4 3.7 20.7 1440 120 80 0.97 24.54 2.0 2.0
ML-112M2-4 4 22.41 1440 150 80 0.97 26.54 2.5 1.7

 

Model KW Currnet
(A)
Speed
(rpm)
Starting
Current(A)
Eff
(%)
Power Factor
(Φ)
Tn
(N.m)
Tst/Tn Tmax/In
MY-561-2 0.09 0.79 2760 3 54 0.92 0.31 0.65 1.6
MY-562-2 0.12 0.98 2770 4 58 0.92 0.41 0.65 1.6
MY-563-2 0.18 1.42 2780 5 60 0.92 0.62 0.65 1.6
MY-631-2 0.18 1.33 2780 5 62 0.95 0.62 0.6 1.7
MY-632-2 0.25 1.76 2780 7 65 0.95 0.86 0.6 1.7
MY-633-2 0.37 2.58 2780 8 67 0.93 1.27 0.45 1.65
MY-711-2 0.37 2.53 2800 10 67 0.95 1.26 0.6 1.7
MY-712-2 0.55 3.49 2810 15 70 0.98 1.87 0.55 1.7
MY-713-2 0.75 4.67 2810 20 72 0.97 2.55 0.48 1.8
MY-801-2 0.75 4.62 2810 20 72 0.98 2.55 0.35 1.7
MY-802-2 1.1 6.51 2820 28 75 0.98 3.73 0.33 1.7
MY-803-2 1.5 8.76 2810 40 76 0.98 5.10 0.33 1.8
MY-90S-2 1.5 8.76 2820 40 76 0.98 5.09 0.3 1.8
MY-90L-2 2.2 12.7 2820 60 77 0.98 7.45 0.3 1.8
MY-100L-2 3 17.1 2840 75 78 0.98 10.09 0.28 1.8
                   
MY-561-4 0.06 0.59 1360 2.5 48 0.92 0.41 0.75 1.6
MY-562-4 0.09 0.83 1370 3 51 0.92 0.63 0.75 1.6
MY-631-4 0.12 1.03 1380 3.5 55 0.92 0.83 0.65 1.6
MY-632-4 0.18 1.49 1390 5.5 57 0.92 1.24 0.65 1.5
MY-633-4 0.25 2.00 1370 5 58 0.95 1.74 0.6 1.6
MY-711-4 0.25 1.90 1400 8 61 0.94 1.71 0.5 1.5
MY-712-4 0.37 2.76 1400 10 62 0.94 2.52 0.5 1.5
MY-713-4 0.55 3.85 1400 12 64 0.97 3.75 0.48 1.7
MY-801-4 0.55 3.93 1400 15 64 0.95 3.75 0.35 1.7
MY-802-4 0.75 5.05 1410 20 68 0.95 5.08 0.33 1.7
MY-90S-4 1.1 6.87 1410 30 71 0.98 7.45 0.33 1.8
MY-90L-4 1.5 9.12 1420 40 73 0.98 10.09 0.3 1.8
MY-100L1-4 2.2 12.8 1440 60 76 0.98 14.59 0.28 1.8
MY-100L2-4 3 17.1 1440 75 78 0.98 19.90 0.28 1.8

Company Profile

Why choose us?
      Guarantee of our motors:18-24months
      General elivery time:15-30days
      Price of motors: Most reasonable during your all suppliers
      Packing:Strong export cartons/wooden case/plywood cases/pallets
      Payment way with your order: T/T,LC,DP,etc
      Sample order: Acceptable
      Shipment way: Sea ship,Air flight,Express way,Land transfer way.

 

Certifications

We have our own design and development team, and we can provide customers with standard AC motors. We can also customize single-phase/three-phase motors according to customer special needs. At present, our main motor products cover three-phase high-efficiency motors, general-purpose three-phase motors, single-phase motors, etc.
Main motor range: IE3/YE3, IE2/YE2, IE1/Y2, Y, YS, MS, YC, YL, YY, MC, MY, ML motors.
American standard NEMA motors
Russian standard GOST ANP motor
ZheJiang type AEEF motor, YC motor

Certificates and more COMPANY information please go to “ABOUT US”
—————————————————————————————————————————
Welcome to contact us directly…
 
LIYUAN MOTOR    INDUSTRIAL SOLUTIONS

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China Hot selling China Ml 0.18kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw 3.7kw 4kw 5.5kw 7.5kw Single Phase Asynchronous Induction AC Electric Motor   vacuum pump	China Hot selling China Ml 0.18kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw 3.7kw 4kw 5.5kw 7.5kw Single Phase Asynchronous Induction AC Electric Motor   vacuum pump
editor by CX 2024-04-03

China Standard 56c 4pole 1/2HP Induction Electric AC Single Phase Motor vacuum pump diy

Product Description

Product Description

NEMA General Purpose Single Phase 56C Motor Feature:
HP:1/3-5HP
RPM:1800,3600 RPM
Frame:56C
Protection:IP55
Class B Temp Rise
Rolled Steel Construction
Removable Base
Overload Protection With Manual Reset
 

Model HP RPM AMPS VOLTS FRAME ENC HZ IP INS
U121356C 1/3 3600 6.2/3.1 115/230 56C TEFC 60 55 F
U141356C 1800 6.6/3.3 115/230
U121256C 1/2 3600 8.0/4.0 115/230
U141256C 1800 8.8/4.4 115/230
U123456C 3/4 3600 10.6/5.3 115/230
U143456C 1800 11.0/5.5 115/230
U120156C 1 3600 11.2/5.6 115/230
U140156C 1800 13.6/6.8 115/230
U121556C 1.5 3600 14.2/7.1 115/230
U141556C 1800 15.2/7.6 115/230
U125716C 2 3600 18.2/9.1 115/230
U145716C 1800 20.0/10.0 115/230
U12 0571 C 3 3600 13.0 208-230
U12571C 5 3600 21.0 208-230

Company Profile

     HangZhou CHINAMFG Motor Factory is located in China’s coastal city – in HangZhou City. The transportation is very convenient. (Close to NO.104 National Road, HangZhou)Founded in 2003, we have many years of motor manufacturing history. Our company has strong scientific and technological strength, advanced development tools, high-efficient production facilities, and complete testing means. We have improved the modern management system. We produce IEC standard aluminum shell, die-casting aluminum casing and NEMA standard electrical motor shell plate, which are used in air compressors, agricultural machinery, electric tools, pumps, and fans. With superior performance and good prices, we have enjoyed a high reputation.We are actively plHangZhou and making technical innovation, and look CHINAMFG to further improving the modern enterprise management system. We hope to provide more advanced technology, more internationally competitive products and higher quality services to our customers. We are committed to constantly striving for excellence, and create a glorious future in the field!

 

The production workshop

Packaging & Shipping

Certifications

The exhibition

Product recommend

 

FAQ

Q:Are you a manufacturer ? And where is it ?
A:We are a professional manufacturer in electric motors, and our factory is located in HangZhou City, ZHangZhoug province, China.

Q:What’is your terms of payment ?
A:T/T is available. (30%deposit before production, 70%balance before shipping)

Q:What’s your delivery time ?
A:Products will usually be shipped in 20 days after the initial payment.

Q:How do you pack your products ?
A:Small motors are packed in plywood cases, and large motors in wooden cases.

Q:what service can we provide ?
A:Accepted Delivery Terms: FOB;Accepted Payment Currency:USD;Accepted Payment Type: T/T;Language Spoken:English,Chinese;

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: Low Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Closed Type
Number of Poles: 4
Samples:
US$ 108/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

Can you provide examples of machinery or equipment that rely on electric motors?

Electric motors are extensively used in various machinery and equipment across different industries. They play a crucial role in converting electrical energy into mechanical energy to power a wide range of applications. Here are some examples of machinery and equipment that heavily rely on electric motors:

  • Industrial Machinery: Electric motors are found in numerous industrial machinery and equipment, such as pumps, compressors, fans, conveyors, agitators, mixers, and machine tools. These motors provide the necessary power for moving fluids, gases, and materials, as well as driving mechanical processes in manufacturing, mining, construction, and other industrial applications.
  • Electric Vehicles: Electric motors are the primary propulsion system in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They provide the power needed to drive the wheels and propel the vehicle. Electric motors in EVs and HEVs offer high efficiency, instant torque, and regenerative braking capabilities, contributing to the advancement of sustainable transportation.
  • Household Appliances: Many household appliances rely on electric motors for their operation. Examples include refrigerators, air conditioners, washing machines, dishwashers, vacuum cleaners, blenders, and electric fans. Electric motors enable the movement, cooling, or mechanical functions in these appliances, enhancing convenience and efficiency in daily household tasks.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for various functions. Motors power the fans in air handling units, circulate air through ducts, and drive compressors in air conditioning and refrigeration systems. Electric motors in HVAC systems contribute to efficient temperature control and air circulation in residential, commercial, and industrial buildings.
  • Medical Equipment: Electric motors are essential components in a wide array of medical equipment. Examples include MRI machines, X-ray machines, CT scanners, surgical robots, dental drills, infusion pumps, and patient lifts. These motors enable precise movements, imaging capabilities, and mechanical functions in medical devices, supporting diagnostics, treatment, and patient care.
  • Power Tools: Electric motors are commonly used in power tools such as drills, saws, grinders, sanders, and routers. They provide the rotational force and power required for cutting, shaping, drilling, and other tasks. Electric motors in power tools offer portability, ease of use, and consistent performance for both professional and DIY applications.
  • Aircraft Systems: Electric motors are increasingly utilized in aircraft systems. They power various components, including landing gear actuation systems, fuel pumps, hydraulic systems, and cabin air circulation systems. Electric motors in aircraft contribute to weight reduction, energy efficiency, and improved reliability compared to traditional hydraulic or pneumatic systems.

These examples represent just a fraction of the machinery and equipment that rely on electric motors. From industrial applications to household appliances and transportation systems, electric motors are integral to modern technology, providing efficient and reliable mechanical power for a wide range of purposes.

electric motor

Can electric motors be used in renewable energy systems like wind turbines?

Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:

Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:

  1. Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
  2. Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
  3. Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
  4. Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
  5. Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.

Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.

Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.

electric motor

How do electric motors generate motion and mechanical work?

Electric motors generate motion and mechanical work through the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors accomplish this:

  1. Magnetic Fields: Electric motors consist of a stationary part called the stator and a rotating part called the rotor. The stator contains coils of wire that are supplied with an electric current, creating a magnetic field around them. The rotor, on the other hand, typically has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor creates a rotational force, also known as torque. This torque causes the rotor to start rotating.
  3. Electromagnetic Induction: In certain types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current (AC) is supplied to the stator, it creates a changing magnetic field. This changing magnetic field induces voltage in the rotor, which leads to the flow of current in the rotor. The current in the rotor produces its own magnetic field, and the interaction between the stator’s magnetic field and the rotor’s magnetic field results in rotation.
  4. Commutation: In motors that use direct current (DC), such as brushed DC motors, commutation is employed. Commutation is the process of reversing the direction of current in the rotor’s electromagnets as the rotor rotates. This is done using a component called a commutator, which ensures that the magnetic fields of the rotor and the stator are always properly aligned. By periodically reversing the current, the commutator allows for continuous rotation.
  5. Conversion of Electrical Energy to Mechanical Energy: As the rotor rotates, the mechanical energy is produced. The rotational motion of the rotor is transferred to the motor’s output shaft, which is connected to the load or the device that needs to be driven. The mechanical work is performed as the output shaft drives the load, such as spinning a fan blade, rotating a conveyor belt, or powering a machine.

In summary, electric motors generate motion and mechanical work by utilizing the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. The electric current flowing through the stator’s coils creates a magnetic field that interacts with the magnetic field of the rotor, producing torque and initiating rotation. In some motors, electromagnetic induction is employed, where a changing magnetic field induces voltage and current in the rotor, leading to rotation. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft, enabling the motor to perform mechanical work by driving the load.

China Standard 56c 4pole 1/2HP Induction Electric AC Single Phase Motor   vacuum pump diyChina Standard 56c 4pole 1/2HP Induction Electric AC Single Phase Motor   vacuum pump diy
editor by CX 2024-03-28

China OEM 220-380-440V 2pole 4pole1HP 2HP 3HP 4HP 15HP GOST Anp Copper Wire Electrical Yc Yl Y Y2 Ye2 Y3 Ye3 Asynchronous Three Single Phase Induction AC Electric Motor vacuum pump ac

Product Description

 

PRODUCT OVERVIEW
  Applications:General purpose including cutting machines,
pumps,fans,conveyors,machines tools of farm duty and food process.
  Features :High efficiency and energy saving,low noise and little vibration.
  Insulation class :F
  Protection class:IP54 or IP55
CONDITIONS OF USE
  The altitude not exceeding 1000m above sea level.The ambient temperature subject to seasonal variations but not exceeding +40ºC and not less than -15°C.

 

Product Parameters

Packaging & Shipping

 

1) Packing Details
Packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.Or according to client’s requirement.

2) Shipping Details
Samples will be shipped within 10 days.
Batch order leading time according to the actual situation.

Company Profile

   ZHangZhoug CHINAMFG Motor Co., Ltd,located in Zeguo Town,HangZhou,HangZhou City,China,enjoys convenient land, sea and air transportation network.
  We are specialized in all kinds of small and middle-sized electric motors.our main products include electric motors of Y series,Y2/YE2 series,YS/MS series of Three Phase Asynchronous motor;YC series,YL series,MY/ML series,JY series of Single Phase motors etc.They are widely used in machine tool, fans, pumps, compressors, packaging machinery, mining machinery, construction machinery, food machinery and other mechanical transmission device.
  We have obtained ISO90001-2008 quality certificate, CE certificate and CCC certificate.Our products are widely exported to over 50 countries and regions,such as east Europe,Southeast Asia,South America,Middle East,Africa etc.Meanwhile,we have kept well touch with many trading companies at home and abroad for cooperation relationship.
  “Reliable quality, Excellent service, Reasonable price, Timely delivery” is our company persistent pursuit.Looking CHINAMFG to be your long term business partner.

Detailed Photos

FAQ

Q:Why choose us?
A:professional electric motor manufacturer for 10 years;
   good quality material and advanced test machine

Q:What is your MOQ?
A:10 pcs is ok for each model.At first time,trial order is okay.

Q:What about your warranty?
A: 1 year,except man-made destroyed.

Q: how about your payment way ?
A: 30% T/T in advance,70% balance on sight of BL copy by T/T or irrevocable L/C.

Q:Can you make OEM/ODM order?
A:Yes,we have rich experience on OEM/ODM order. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

What safety precautions should be followed when working with electric motors?

Working with electric motors requires adherence to specific safety precautions to ensure the well-being of individuals and prevent accidents. Electric motors involve electrical hazards that can cause electric shock, burns, or other injuries if proper safety measures are not followed. Here’s a detailed explanation of the safety precautions that should be followed when working with electric motors:

  1. Qualified Personnel: It is important to assign work on electric motors to qualified personnel who have the necessary knowledge, training, and experience in electrical systems and motor operation. Qualified electricians or technicians should handle installation, maintenance, and repairs involving electric motors.
  2. De-Energization and Lockout/Tagout: Before performing any work on electric motors, they should be de-energized, and appropriate lockout/tagout procedures should be followed. This involves isolating the motor from the power source, ensuring that it cannot be energized accidentally. Lockout/tagout procedures help prevent unexpected startup and protect workers from electrical hazards.
  3. Personal Protective Equipment (PPE): When working with electric motors, appropriate personal protective equipment should be worn. This may include insulated gloves, safety glasses, protective clothing, and footwear with electrical insulation. PPE helps protect against potential electrical shocks, burns, and other physical hazards.
  4. Inspection and Maintenance: Regular inspection and maintenance of electric motors are essential to identify potential issues or defects that could compromise safety. This includes checking for loose connections, damaged insulation, worn-out components, or overheating. Any defects or abnormalities should be addressed promptly by qualified personnel.
  5. Proper Grounding: Electric motors should be properly grounded to prevent electrical shock hazards. Grounding ensures that any fault currents are redirected safely to the ground, reducing the risk of electric shock to individuals working on or around the motor.
  6. Avoiding Wet Conditions: Electric motors should not be operated or worked on in wet or damp conditions unless they are specifically designed for such environments. Water or moisture increases the risk of electrical shock. If working in wet conditions is necessary, appropriate safety measures and equipment, such as waterproof PPE, should be used.
  7. Safe Electrical Connections: When connecting or disconnecting electric motors, proper electrical connections should be made. This includes ensuring that power is completely switched off, using appropriate tools and techniques for making connections, and tightening electrical terminals securely. Loose or faulty connections can lead to electrical hazards, overheating, or equipment failure.
  8. Awareness of Capacitors: Some electric motors contain capacitors that store electrical energy even when the motor is de-energized. These capacitors can discharge unexpectedly and cause electric shock. Therefore, it is important to discharge capacitors safely before working on the motor and to be cautious of potential residual energy even after de-energization.
  9. Training and Knowledge: Individuals working with electric motors should receive proper training and have a good understanding of electrical safety practices and procedures. They should be knowledgeable about the potential hazards associated with electric motors and know how to respond to emergencies, such as electrical shocks or fires.
  10. Adherence to Regulations and Standards: Safety precautions should align with relevant regulations, codes, and standards specific to electrical work and motor operation. These may include local electrical codes, occupational safety guidelines, and industry-specific standards. Compliance with these regulations helps ensure a safe working environment.

It is crucial to prioritize safety when working with electric motors. Following these safety precautions, along with any additional guidelines provided by equipment manufacturers or local regulations, helps minimize the risk of electrical accidents, injuries, and property damage. Regular training, awareness, and a safety-focused mindset contribute to a safer working environment when dealing with electric motors.

electric motor

Can you explain the basic principles of electric motor operation?

An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:

  1. Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
  3. Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
  4. Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
  5. Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.

In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.

China OEM 220-380-440V 2pole 4pole1HP 2HP 3HP 4HP 15HP GOST Anp Copper Wire Electrical Yc Yl Y Y2 Ye2 Y3 Ye3 Asynchronous Three Single Phase Induction AC Electric Motor   vacuum pump acChina OEM 220-380-440V 2pole 4pole1HP 2HP 3HP 4HP 15HP GOST Anp Copper Wire Electrical Yc Yl Y Y2 Ye2 Y3 Ye3 Asynchronous Three Single Phase Induction AC Electric Motor   vacuum pump ac
editor by CX 2024-03-28

China Good quality Yy My Ml Yc Mc Ys Ms Y2 Ie2 Ye2 Capacitor Start Run B14 B5 Single Three Phase Induction AC Electric Electrical Motor for Fans Blowers Pumps Compressor Cleaners manufacturer

Product Description

YY series single phase capacitor run asynchronous  motors,are suitable for fans, blowers, and various equipments requiring light load starting.This series motors with  high power factor and efficiency, small size, light weight, good performance, low noise, and convenient maintenance

 

Power: 0.55kw-2.2kw Voltage: 220/230V( can can done as your need)
Frequency: 50/60hz Enamelled Wire: Copper Wire (Can Done Aluminum wire as Your Need)
Insulation Class: F Mounting Way: B3/B5/B14/B34/B35
Protection Grade: IP54 IP44 motor body : cast iron/cast aluminum

.

1. Are you a manufacturer or trading company?
We are a professional manufacturer of single phase motor,three phase electric motor and pump

2. Where is your factory located? 
Our factory is in HangZhou,HangZhou,ZHangZhoug,China. it is very near from HangZhou city,HangZhou city,ZheJiang city.

3. How do you confirm your quality?
A. Rich experience on weakness may appear on every components and products;
B. 100% checking before order and bulk sample reserved in warehouse for after-sale service.

4. Is it acceptable to use self-label brand?
Yes, we provide OEM products, also welcome ODM OTM orders.

5. What is your payment terms?
T/T and L/C. Normally T/T 30% deposit, 70% balance should be paid against the B/L copy.
Better payment terms Available for regular esteemed customers.

6. What is your company’s production capacity every year?
We have over 200,000 pcs production capacity every year.

7. Is sample available for my reference before final order?
Yes, we support trial sample order(1-100pcs) for you. Please contact with our sevice staff.

If you have any other questions,welcome to contact  us.

Application: Industrial
Speed: Variable Speed
Number of Stator: Single-Phase
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|

Order Sample

1.1kw
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

How does an electric motor ensure efficient energy conversion?

An electric motor ensures efficient energy conversion by employing various design features and principles that minimize energy losses and maximize the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors achieve efficient energy conversion:

  1. Efficient Motor Design: Electric motors are designed with careful consideration given to their construction and materials. High-quality magnetic materials, such as laminated iron cores and permanent magnets, are used to reduce magnetic losses and maximize magnetic field strength. Additionally, the motor’s windings are designed with low-resistance conductors to minimize electrical losses. By optimizing the motor’s design, manufacturers can improve its overall efficiency.
  2. Reducing Friction and Mechanical Losses: Electric motors are designed to minimize friction and mechanical losses. This is achieved through the use of high-quality bearings and lubrication systems that reduce friction between moving parts. By reducing friction, the motor can operate more efficiently, translating more of the input energy into useful mechanical work rather than dissipating it as heat.
  3. Efficient Control and Power Electronics: Electric motors employ advanced control techniques and power electronics to enhance energy conversion efficiency. Variable frequency drives (VFDs) are commonly used to control motor speed and torque, allowing the motor to operate at optimal efficiency levels under varying load conditions. Power electronics devices, such as insulated gate bipolar transistors (IGBTs) and MOSFETs, minimize switching losses and optimize power flow within the motor.
  4. Regenerative Braking and Energy Recovery: Some electric motors, particularly those used in hybrid electric vehicles (HEVs) and electric trains, incorporate regenerative braking systems. These systems convert the kinetic energy of the moving vehicle back into electrical energy, which can be stored and reused. By capturing and reusing energy that would otherwise be wasted as heat during braking, regenerative braking significantly improves overall energy efficiency.
  5. Efficient Cooling and Thermal Management: Electric motors generate heat during operation, and excessive heat can lead to energy losses and reduced efficiency. To mitigate this, motors are designed with efficient cooling systems such as fans, heat sinks, or liquid cooling methods. Proper thermal management ensures that the motor operates within the optimal temperature range, reducing losses and improving overall efficiency.
  6. High-Efficiency Standards and Regulations: Governments and organizations have established energy efficiency standards and regulations for electric motors. These standards encourage manufacturers to produce motors with higher efficiency ratings. Compliance with these standards ensures that motors meet certain efficiency criteria, resulting in improved energy conversion and reduced energy consumption.

By incorporating these design features, control techniques, and efficiency measures, electric motors achieve efficient energy conversion. They minimize energy losses due to factors such as resistance, friction, and heat dissipation, ensuring that a significant portion of the input electrical energy is converted into useful mechanical work. The continuous advancements in motor design, materials, and control technologies further contribute to improving the overall energy efficiency of electric motors.

electric motor

How do electric motors impact the overall productivity of manufacturing processes?

Electric motors have a significant impact on the overall productivity of manufacturing processes. Their versatility, reliability, and efficiency make them essential components in a wide range of industrial applications. Here’s a detailed explanation of how electric motors contribute to enhancing productivity in manufacturing:

  1. Mechanization and Automation: Electric motors serve as the primary power source for a vast array of industrial machinery and equipment. By providing mechanical power, electric motors enable mechanization and automation of manufacturing processes. They drive conveyor belts, pumps, compressors, robots, and other machinery, allowing for efficient material handling, assembly, and production operations. The use of electric motors in mechanized and automated systems reduces manual labor, accelerates production rates, and improves overall productivity.
  2. Precise Control and Repeatable Movements: Electric motors offer precise control over speed, position, and torque, enabling accurate and repeatable movements in manufacturing processes. This precision is crucial for tasks that require consistent and controlled operations, such as precision cutting, drilling, machining, and assembly. Electric motors allow for fine adjustments and control, ensuring that manufacturing operations are performed with high levels of accuracy and repeatability, which ultimately enhances productivity and product quality.
  3. High Speed and Acceleration: Electric motors are capable of achieving high rotational speeds and rapid acceleration, enabling fast-paced manufacturing processes. Motors with high-speed capabilities are utilized in applications that require quick operations, such as high-speed machining, packaging, and sorting. The ability of electric motors to rapidly accelerate and decelerate facilitates efficient cycle times and overall process throughput, contributing to increased productivity.
  4. Reliability and Durability: Electric motors are known for their reliability and durability, making them well-suited for demanding manufacturing environments. With proper maintenance, electric motors can operate continuously for extended periods, minimizing downtime due to motor failures. The reliability of electric motors ensures consistent and uninterrupted production, optimizing manufacturing productivity and reducing costly disruptions.
  5. Energy Efficiency: Electric motors have witnessed significant advancements in energy efficiency, leading to reduced energy consumption in manufacturing processes. Energy-efficient motors convert a higher percentage of electrical input power into useful mechanical output power, resulting in lower energy costs. By utilizing energy-efficient electric motors, manufacturers can achieve cost savings and improve the overall sustainability of their operations. Additionally, energy-efficient motors generate less heat, reducing the need for cooling and improving the overall efficiency of auxiliary systems.
  6. Integration with Control Systems: Electric motors can be seamlessly integrated with sophisticated control systems and automation technologies. This integration allows for centralized control, monitoring, and optimization of manufacturing processes. Control systems can regulate motor speed, torque, and performance based on real-time data, enabling adaptive and efficient operations. The integration of electric motors with control systems enhances the overall productivity by optimizing process parameters, minimizing errors, and facilitating seamless coordination between different stages of manufacturing.

Electric motors significantly impact the overall productivity of manufacturing processes by enabling mechanization, automation, precise control, high-speed operations, reliability, energy efficiency, and integration with advanced control systems. Their versatility and performance characteristics make them indispensable in a wide range of industries, including automotive, electronics, aerospace, food processing, and more. By harnessing the power of electric motors, manufacturers can streamline operations, improve product quality, increase throughput, and ultimately enhance productivity in their manufacturing processes.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China Good quality Yy My Ml Yc Mc Ys Ms Y2 Ie2 Ye2 Capacitor Start Run B14 B5 Single Three Phase Induction AC Electric Electrical Motor for Fans Blowers Pumps Compressor Cleaners   manufacturer China Good quality Yy My Ml Yc Mc Ys Ms Y2 Ie2 Ye2 Capacitor Start Run B14 B5 Single Three Phase Induction AC Electric Electrical Motor for Fans Blowers Pumps Compressor Cleaners   manufacturer
editor by CX 2023-12-15

China best CE Yc Yl Y2 Y  GOST AC Three Single Phase Asynchronous Induction Copper Wire Winding Electrical Electric Motor with Hot selling

Product Description

 

 

Technical parameter:                                                                                                                         

Output
(KW)

MODEL

Amps
(A)

Speed
(R/min)

Eff.
%

p.f.

RT
N.m

     

Noise LwdB
(A)

Weight
(Kg)

380V 50HZ 2P

0.18

Y2-631-2

0.5

2800

65.0

0.80

00.61

2.2

2.2

5.5

61

14

0.25

Y2-632-2

0.7

2800

68.0

0.81

0.96

2.2

2.2

5.5

61

14.5

0.37

Y2-711-2

1.0

2800

70.0

0.81

1.26

2.2

2.2

6.1

64

15

0.55

Y2-712-2

1.4

2800

73.0

0.82

1.88

2.2

2.3

6.1

64

15.5

0.75

Y2-801-2

1.8

2825

75.0

0.83

2.54

2.2

2.3

6.1

67

16.5

1.1

Y2-802-2

2.6

2825

77.0

0.84

3.72

2.2

2.3

7.0

67

17.5

1.5

Y2-90S-2

3.4

2840

79.0

0.84

5.04

2.2

2.3

7.0

72

21

2.2

Y2-90L-2

4.9

2840

81.0

0.85

7.40

2.2

2.3

7.0

72

25

3

Y2-100L-2

6.3

2880

83.0

0.87

9.95

2.2

2.3

7.5

76

33

4

Y2-112M-2

8.1

2890

85.0

0.88

13.22

2.2

2.3

7.5

77

41

5.5

Y2-132S1-2

11.0

2900

86.0

0.88

18.11

2.2

2.3

7.5

80

63

7.5

Y2-132S2-2

14.9

2900

87.0

0.88

24.70

2.2

2.3

7.5

80

70

11

Y2-160M1-2

21.3

2930

88.0

0.89

35.85

2.2

2.3

7.5

86

110

15

Y2-160M2-2

28.8

2930

89.0

0.89

48.89

2.2

2.3

7.5

86

120

18.5

Y2-160L-2

34.7

2930

90.5

0.90

60.30

2.2

2.3

7.5

86

135

22

Y2-180M-2

41.0

2940

91.2

0.90

71.46

2.0

2.3

7.5

89

165

30

Y2-200L1-2

55.5

2950

92.0

0.90

97.12

2.0

2.3

7.5

92

218

37

Y2-200L2-2

67.9

2950

92.3

0.90

119.78

2.0

2.3

7.5

92

230

45

Y2-225M-2

82.3

2970

92.3

0.90

144.70

2.0

2.3

7.5

92

280

55

Y2-250M-2

100.4

2970

92.5

0.90

176.85

2.0

2.3

7.5

93

365

75

Y2-280S-2

134.4

2970

93.2

0.91

241.16

2.0

2.3

7.5

94

495

90

Y2-280M-2

160.2

2970

93.8

0.91

289.39

2.0

2.3

7.5

94

565

110

Y2-315S-2

195.4

2980

94.0

0.91

352.51

1.8

2.2

7.1

96

890

132

Y2-315M-2

233.2

2980

94.5

0.91

423.02

1.8

2.2

7.1

96

980

160

Y2-315L1-2

279.3

2980

94.6

0.92

512.75

1.8

2.2

7.1

99

1055

200

Y2-315L2-2

348.4

2980

94.8

0.92

640.94

1.8

2.2

7.1

99

1110

250

Y2-355M-2

433.2

2985

95.3

0.92

799.83

1.6

2.2

7.1

103

1900

315

Y2-355L-2

544.2

2985

95.6

0.92

1007.79

1.6

2.2

7.1

103

2300

380V 50HZ 4P

0.12

Y2-631-4

0.4

1400

57.0

0.72

0.82

2.1

2.2

4.4

52

13

0.18

Y2-632-4

0.6

1400

60.0

0.73

1.23

2.1

2.2

4.4

52

13.5

0.25

Y2-711-4

0.8

1400

65.0

0.74

1.71

2.1

2.2

5.2

55

14

0.37

Y2-712-4

1.1

1400

67.0

0.75

2.54

2.1

2.2

5.2

55

14.5

0.55

Y2-801-4

1.6

1390

71.0

0.75

3.78

2.4

2.3

5.2

58

15

0.75

Y2-802-4

2.0

1490

73.0

0.77

5.15

2.4

2.3

6.0

58

16

1.1

Y2-90S-4

2.0

1400

75.0

0.77

7.50

2.3

2.3

6.0

61

23

1.5

Y2-90L-4

3.7

1420

78.0

0.79

10.23

2.3

2.3

6.0

61

25

2.2

Y2-100L1-4

5.2

1420

80.0

0.81

14.80

2.3

2.3

7.0

64

33

3.

Y2-100L2-4

6.8

1420

82.0

0.82

20.18

2.3

2.3

7.0

64

35

4.

Y2-112M-4

8.8

1440

84.0

0.82

26.53

2.3

2.3

7.0

65

41

5.5

Y2-132S-4

11.8

1440

85.0

0.83

36.48

2.3

2.3

7.0

71

65

7.5

Y2-132M-S

15.6

1440

87.0

0.84

49.74

2.2

2.3

7.0

71

76

11

Y2-160M-4

22.3

1460

88.0

0.85

71.59

2.2

2.3

7.0

75

118

15

Y2-160L-4

30.1

1460

89.0

0.85

98.12

2.2

2.3

7.5

75

132

18.5

Y2-180M-4

36.5

1470

90.5

0.85

120.19

2.2

2.3

7.5

76

164

22

Y2-1180L-4

43.2

1470

91.0

0.85

142.93

2.2

2.3

7.5

76

182

30

Y2-200L-4

57.6

1480

92.0

0.86

193.68

2.2

2.3

7.2

79

245

37

Y2-225S-4

69.9

1480

92.5

0.87

238.87

2.2

2.3

7.2

81

258

45

Y2-225M-4

84.7

1480

92.8

0.87

290.37

2.2

2.3

7.2

81

290

55

Y2-250M-4

103.3

1480

93.0

0.87

354.90

2.2

2.3

7.2

83

388

75

Y2-280S-4

139.6

1480

93.8

0.87

483.95

2.2

2.3

7.2

86

510

90

Y2-280M-4

166.9

1485

94.2

0.87

578.79

2.2

2.3

7.2

86

606

110

Y2-315S-4

201.0

1485

94.5

0.88

707.41

2.1

2.2

6.9

93

910

132

Y2-315M-4

240.4

1485

94.8

0.88

848.89

2.1

2.2

6.9

93

1000

160

Y2-315L1-4

287.8

1485

94.9

0.89

1571.96

2.1

2.2

6.9

97

1055

200

Y2-315L2-4

359.4

1485

95.0

0.89

1286.20

2.1

2.2

6.9

97

1128

250

Y2-355M-4

442.9

1490

95.3

0.90

1602.35

2.1

2.2

6.9

101

1700

315

Y2-355L-4

556.2

1490

95.6

0.90

2018.96

2.1

2.2

6.9

101

1900

380V 50HZ 6P

0.18

Y2-711-6

0.8

900

56.0

0.60

1.91

1.9

2.0

4.0

52

14

0.25

Y2-711-6

0.9

900

59.0

0.68

2.65

1.9

2.0

4.0

52

14.5

0.37

Y2-801-6

1.3

900

62.0

0.70

3.93

1.9

2.0

4.7

54

15

0.55

Y2-802-6

1.8

900

65.0

0.72

5.84

1.9

2.1

4.7

54

16

0.75

Y2-90S-6

2.3

910

69.0

0.72

7.87

2.0

2.1

5.5

57

19

1.1

Y2-90L-6

3.2

910

72.0

0.73

11.54

2.0

2.1

5.5

57

22

1.5

Y2-100L-6

3.9

940

76.0

0.76

15.24

2.0

2.1

5.5

61

32

2.2

Y2-112M-6

5.6

940

79.0

0.76

22.35

2.1

2.1

6.5

65

41

3

Y2-132S-6

7.4

960

81.0

0.76

29.84

2.1

2.1

6.5

69

63

4

Y2-132M1-6

9.9

960

82.0

0.76

39.79

2.1

2.1

6.5

69

72

5.5

Y2-132M-6

12.9

960

84.0

0.77

54.71

2.1

2.1

6.5

69

81

7.5

Y2-160M-6

16.9

970

86.0

0.78

73.84

2.0

2.1

6.5

73

118

11

Y2-160L-6

24.2

970

87.5

0.79

108.30

2.0

2.1

6.5

73

145

15

Y2-180L-6

31.6

970

89.0

0.81

147.68

2.1

2.1

7.0

73

178

18.5

Y2-200L1-6

38.6

970

90.0

0.81

182.14

2.1

2.1

7.0

76

200

22

Y2-200L2-6

44.7

970

90.0

0.83

216.60

2.1

2.1

7.0

76

228

30

Y2-225M-6

59.3

980

91.5

0.84

292.35

2.0

2.1

7.0

76

265

37

Y2-250M-6

71.1

980

92.0

0.86

360.56

2.1

2.1

7.0

78

370

45

Y2-280S-6

85.9

980

92.5

0.86

438.52

2.1

2.0

7.0

80

490

55

Y2-280M-6

104.7

980

92.8

0.86

535.97

2.1

2.0

7.0

80

540

75

Y2-315S-6

141.7

980

93.5

0.86

730.87

2.0

2.0

7.0

85

900

90

Y2-315M-6

169.5

985

93.8

0.86

872.59

2.0

2.0

7.0

85

980

110

Y2-315L1-6

206.7

985

94.0

0.86

1066.50

2.0

2.0

6.7

85

1045

132

Y2-315L2-6

244.7

985

94.2

0.87

1279.80

2.0

2.0

6.7

85

1100

160

Y2-355M1-6

292.3

990

94.5

0.88

1543.43

1.9

2.0

6.7

92

1440

200 Y2-355M2-6 364.6 990 94.7 0.88 1929.29 1.9 2.0 6.7 92 1600

250

Y2-355L-6

454.8

990

94.9

0.88

2411.62

1.9

2.0

6.7

92

1700

FACTORY OUTLINED LOOKING:

 

Application: Industrial, Universal, Household Appliances, Power Tools
Operating Speed: Low Speed
Number of Stator: Three-Phase
Species: 2,4,6,8,10,12p
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How does an electric motor ensure efficient energy conversion?

An electric motor ensures efficient energy conversion by employing various design features and principles that minimize energy losses and maximize the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors achieve efficient energy conversion:

  1. Efficient Motor Design: Electric motors are designed with careful consideration given to their construction and materials. High-quality magnetic materials, such as laminated iron cores and permanent magnets, are used to reduce magnetic losses and maximize magnetic field strength. Additionally, the motor’s windings are designed with low-resistance conductors to minimize electrical losses. By optimizing the motor’s design, manufacturers can improve its overall efficiency.
  2. Reducing Friction and Mechanical Losses: Electric motors are designed to minimize friction and mechanical losses. This is achieved through the use of high-quality bearings and lubrication systems that reduce friction between moving parts. By reducing friction, the motor can operate more efficiently, translating more of the input energy into useful mechanical work rather than dissipating it as heat.
  3. Efficient Control and Power Electronics: Electric motors employ advanced control techniques and power electronics to enhance energy conversion efficiency. Variable frequency drives (VFDs) are commonly used to control motor speed and torque, allowing the motor to operate at optimal efficiency levels under varying load conditions. Power electronics devices, such as insulated gate bipolar transistors (IGBTs) and MOSFETs, minimize switching losses and optimize power flow within the motor.
  4. Regenerative Braking and Energy Recovery: Some electric motors, particularly those used in hybrid electric vehicles (HEVs) and electric trains, incorporate regenerative braking systems. These systems convert the kinetic energy of the moving vehicle back into electrical energy, which can be stored and reused. By capturing and reusing energy that would otherwise be wasted as heat during braking, regenerative braking significantly improves overall energy efficiency.
  5. Efficient Cooling and Thermal Management: Electric motors generate heat during operation, and excessive heat can lead to energy losses and reduced efficiency. To mitigate this, motors are designed with efficient cooling systems such as fans, heat sinks, or liquid cooling methods. Proper thermal management ensures that the motor operates within the optimal temperature range, reducing losses and improving overall efficiency.
  6. High-Efficiency Standards and Regulations: Governments and organizations have established energy efficiency standards and regulations for electric motors. These standards encourage manufacturers to produce motors with higher efficiency ratings. Compliance with these standards ensures that motors meet certain efficiency criteria, resulting in improved energy conversion and reduced energy consumption.

By incorporating these design features, control techniques, and efficiency measures, electric motors achieve efficient energy conversion. They minimize energy losses due to factors such as resistance, friction, and heat dissipation, ensuring that a significant portion of the input electrical energy is converted into useful mechanical work. The continuous advancements in motor design, materials, and control technologies further contribute to improving the overall energy efficiency of electric motors.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China best CE Yc Yl Y2 Y  GOST AC Three Single Phase Asynchronous Induction Copper Wire Winding Electrical Electric Motor   with Hot selling	China best CE Yc Yl Y2 Y  GOST AC Three Single Phase Asynchronous Induction Copper Wire Winding Electrical Electric Motor   with Hot selling
editor by CX 2023-11-29

China factory Yc112m-4 Yc Series 3HP/2.2kw Heavy Duty Single Phase Power Capacitor Start AC Induction Electric Motor for Agriculture and Household, China Factory near me manufacturer

Product Description

 

Motor Features

 

Output  3 HP, 2.2 KW
Pace 1450 r/min
Existing  18.fifty A
Eff.  73.%
Electrical power Factor  0.seventy four cos
Begin Recent/ Rated Recent  6.5
Begin Torque/ Rated Torque  2.5
Max. Torque/ Rated Torque  1.8
Pole Quantity  4
Rated Frequency  50Hz/60Hz
Rated Voltage  110V, 115V, 120V, 220V, 230V, 240V
Ambient Temperature  -15°C-40°C 
Altitude  not CZPT 1000m
Relative air humidity  not CZPT ninety%
Duty  Continuous (S1)
Insulation Class  B/F
Security Class  IP44, IP55
Frame material  Cast iron(71-355 body)
Cooling Technique  IC0141
Packing  Plywood scenario
Certifications  CE, CCC, ISO9001: 2008

INTRODUTION

YC collection large-obligation singlephase motors are suitable for powering small sort device equipment and h2o pumps, specifically for family workshops in which only one-period recent supply is offered. Motors of the mentioned series are built-in with up-to date design, created with the best good quality supplies and have the attributes of nice hunting visual appeal, outstanding overall performance, easy servicing and dependable managing. The designations, signs and nominal values are all in conformity with L.E.C expectations.

>> Physique: solid iron 
>> C&U bearing
>> Stator with copper winding
>>100% Copper wire
>>50% Copper &50% aluminum
>>a hundred% Aluminum
>>OEM service offered

Software
Turbines are to be utilised>>In city
>>The countryside
>>Operate internet sites, mountains and pasture lands It can also be utilized as a reserved electricity resource for emergent circumstance.

Mouting Dimensions (mm)

A B C D E F G H K M N P R S T
190 a hundred and forty 70 28 60 8 24 112 12 215 a hundred and eighty 250 fifteen four

Frame Dimensions (mm)

AB AC Ad AE High definition L
245 250 160 one hundred forty three hundred 440

Induction motors, also known as asynchronous motors, use the electromagnetic induction produced by the magnetic field of the stator to generate present in the rotor, thereby producing torque. These motors do not run at a speed in sync with the recent, consequently the title. They use the phenomenon of electromagnetic induction to convert electrical vitality into mechanical vitality. Induction motor rotors are the most typical variety of AC motor identified in pumps, compressors, and other machines of all sorts.
An AC motor is a sort of motor that utilizes the phenomenon of electromagnetic induction. AC electrical power drives the motor. It is a current that periodically reverses direction and modifications its magnitude of the present over time. This present is the opposite of a direct current or “DC” which flows in only a single route. AC motors can provide a relatively effective way to create mechanical vitality from a simple electrical enter sign.

China factory Yc112m-4 Yc Collection 3HP/2.2kw Heavy Responsibility One Phase Power Capacitor Start AC Induction Electric Motor for Agriculture and Home, China Manufacturing facility     close to me manufacturer

China supplier Single Phase Capacitor Start Induction AC Electric Motor with Good quality

Item Description

Merchandise Description

One Phase Vertical/Horizontal Motor

 

 

 

Detailed Images

 

 

 

FAQ

 

Q: How to purchase?
A: send out us inquiry → receive our quotation → negotiate particulars → confirm the sample → sign agreement/deposit → mass generation → cargo all set → balance/shipping and delivery → further cooperation.

Q: How about Sample buy?
A: Sample is available for you. remember to contact us for information. Contact us

Q: Which shipping way is avaliable?
A: DHL, UPS, FedEx, TNT, EMS, China Put up,Sea are offered.The other shipping and delivery techniques are also offered, please get in touch with us if you require ship by the other delivery way. 

Q: How lengthy is the provide?
A: Devliver time relies upon on the amount you purchase. normally it requires fifteen-twenty five operating times.

Q: My bundle has missing items. What can I do?
A: Make sure you get in touch with our assistance team and we will confirm your purchase with the deal contents.We apologize for any inconveniences. 

Q: How to verify the payment?
A: We settle for payment by T/T, PayPal, the other payment methods also could be approved,Make sure you contact us prior to you pay out by the other payment ways. Also 30-50% deposit is offered, the equilibrium money should be compensated just before shipping and delivery.
 

Induction motors, also recognized as asynchronous motors, use the electromagnetic induction generated by the magnetic area of the stator to generate present in the rotor, therefore creating torque. These motors do not run at a speed in sync with the existing, therefore the identify. They use the phenomenon of electromagnetic induction to transform electrical vitality into mechanical energy. Induction motor rotors are the most common sort of AC motor located in pumps, compressors, and other machines of all varieties.
An AC motor is a typical variety of electric motor that is pushed by alternating recent. As the most productive functional motors for each day industrial apps (as nicely as hobbyist projects, home items, and all other specialist products and customer products), AC motors offer a reasonably efficient strategy of creating mechanical energy from a straightforward electrical input signal.

China supplier Single Phase Capacitor Start Induction AC Electric Motor     with Good quality

China OEM Single Phase Electric AC Induction Motor for Cooking Cabinet /Range Hood with Free Design Custom

Solution Description

Lower – electrical power AC motor
115V 60Hz
 UL&CUL authentication
Sealing treatment is far more watertight
Focus on motor producing for 40 years 
 

Synchronous motors operate at a velocity that is synchronous with the frequency of the mains existing. This means that in the regular-condition of the motor, the rotation of the shaft is synchronized with the frequency of the offer recent. The period of rotation of the shaft is equal to the number of AC cycles. The stator of a synchronous motor has polyphase AC electromagnets. These electromagnets produce a magnetic subject that rotates in synchrony with the recent in the wire. The rotor equipped with long term magnets or electromagnets rotates synchronously with the stator magnetic field to form the 2nd synchronous rotating magnetic subject of the AC motor.
Two kinds of AC motors contain: Synchronous: The reality that a synchronous motor rotates at the very same fee as the frequency of the mains present offers the motor its name. A synchronous motor is composed of a stator and a rotor. Synchronous motors have a vast assortment of programs. Induction: Induction motors are the simplest and strongest motors accessible. These AC motors consist of two electrical factors: a wound stator and rotor assembly. The existing essential to switch the rotor is created by the electromagnetic induction created by the stator windings. Induction motors are one particular of the most commonly used kinds of motors in the world.

China OEM Single Phase Electric AC Induction Motor for Cooking Cabinet /Range Hood     with Free Design Custom

China high quality Yc90L-2 Yc Series 2HP/1.5kw Heavy Duty Single Phase Power Capacitor Start AC Induction Electric Motor for Agriculture and Household, China Factory with Hot selling

Solution Description

 

Motor Characteristics

 

Output  2 HP, 1.5 KW
Pace  2870 r/min
Recent  11.40 A
Eff.  73.%
Electrical power Issue  0.82 cos
Start off Current/ Rated Existing  7.
Commence Torque/ Rated Torque  2.five
Max. Torque/ Rated Torque  1.8
Pole Quantity  2
Rated Frequency  50Hz/60Hz
Rated Voltage  110V, 115V, 120V, 220V, 230V, 240V
Ambient Temperature  -15°C-40°C 
Altitude  not CZPT 1000m
Relative air humidity  not CZPT ninety%
Responsibility  Continuous (S1)
Insulation Course  B/F
Safety Class  IP44, IP55
Frame material  Cast iron(seventy one-355 body)
Cooling Method  IC0141
Packing  Plywood scenario
Certifications  CE, CCC, ISO9001: 2008

INTRODUTION

YC collection large-duty singlephase motors are ideal for powering little variety device instruments and h2o pumps, specifically for family workshops in which only one-phase present provide is offered. Motors of the said series are built-in with up-to date design, produced with the very best good quality components and have the functions of enjoyable searching look, exceptional efficiency, simple routine maintenance and dependable managing. The designations, symptoms and nominal values are all in conformity with L.E.C standards.

>> Physique: solid iron 
>> C&U bearing
>> Stator with copper winding
>>100% Copper wire
>>50% Copper &50% aluminum
>>one hundred% Aluminum
>>OEM services presented

Application
Generators are to be utilised>>In town
>>The countryside
>>Operate web sites, mountains and pasture lands It can also be used as a reserved electricity supply for emergent circumstance.

Mouting Dimensions (mm)

A B C D E F G H K M N P R S T
140 one hundred twenty five fifty six 24 50 8 20 90 ten 165 a hundred thirty two hundred twelve three.five

Frame Proportions (mm)

AB AC Advert AE Hd L
a hundred and eighty 185 140 a hundred and twenty 240 385

AC motors and equipment motors consist of one-period motors for single-section AC electrical power and a few-stage motors for a few-stage AC electrical power. A one-stage motor just wants to be related to a single-phase electrical power offer through the incorporated capacitors to function. 3-phase motors do not demand capacitors. You basically connect the motor immediately to the a few-period AC energy offer. Dongfang Electrical offers a wide range of AC motors and equipment motors Constant or variable speed AC motors are available with solitary or three-stage equipment and electromagnetic braking options
Induction motors, also acknowledged as asynchronous motors, use the electromagnetic induction created by the magnetic area of the stator to create existing in the rotor, thus generating torque. These motors do not run at a speed in sync with the current, that’s why the identify. They use the phenomenon of electromagnetic induction to change electrical vitality into mechanical vitality. Induction motor rotors are the most common kind of AC motor discovered in pumps, compressors, and other machines of all types.

China high quality Yc90L-2 Yc Collection 2HP/1.5kw Weighty Responsibility One Stage Electricity Capacitor Start AC Induction Electric Motor for Agriculture and House, China Factory     with Hot offering

China Professional Yc100L-2 Yc Series 3HP/2.2kw Heavy Duty Single Phase Power Capacitor Start AC Induction Electric Motor for Agriculture and Household, China Factory with Great quality

Item Description

 

Motor Functions

 

Output  3 HP, 2.2  KW
Speed  2900 r/min
Existing  16.fifty A
Eff.  74.%
Power Factor  0.eighty two cos
Begin Current/ Rated Recent  7.
Begin Torque/ Rated Torque  2.5
Max. Torque/ Rated Torque  1.eight
Pole Number  2
Rated Frequency  50Hz/60Hz
Rated Voltage  110V, 115V, 120V, 220V, 230V, 240V
Ambient Temperature  -15°C-40°C 
Altitude  not CZPT 1000m
Relative air humidity  not CZPT 90%
Responsibility  Continuous (S1)
Insulation Class  B/F
Defense Course  IP44, IP55
Body materials  Cast iron(seventy one-355 body)
Cooling Strategy  IC0141
Packing  Plywood scenario
Certifications  CE, CCC, ISO9001: 2008

INTRODUTION

YC series weighty-responsibility singlephase motors are suitable for powering small kind machine instruments and h2o pumps, specially for family workshops in which only solitary-phase existing offer is obtainable. Motors of the mentioned series are integrated with up-to date design, produced with the ideal high quality materials and have the characteristics of pleasant seeking appearance, exceptional functionality, easy maintenance and reputable working. The designations, symptoms and nominal values are all in conformity with L.E.C standards.

>> Human body: cast iron 
>> C&U bearing
>> Stator with copper winding
>>a hundred% Copper wire
>>fifty% Copper &50% aluminum
>>a hundred% Aluminum
>>OEM service presented

Software
Generators are to be utilized>>In town
>>The countryside
>>Perform sites, mountains and pasture lands It can also be utilised as a reserved energy resource for emergent situation.

Mouting Dimensions (mm)

A B C D E F G H K M N P R S T
160 one hundred forty sixty three 28 60 eight 24 a hundred 12 215 one hundred eighty 250 fifteen 4

Frame Dimensions (mm)

AB AC Advertisement AE High definition L
205 220 a hundred forty five 130 260 415

These NEMA c-aircraft reducers are gear energy, upkeep-free of charge, and can be put in in any orientation with a slip fit “O” ring design. Accessible in minimal to large reduction ratios, flange mount or foundation mount types, appropriate angle or hollow shaft correct angle versions. Put in NEMA C-Face AC motors, brushless DC motors, and brushed DC motors. For 1/2 HP to 3 HP Motors NEMA 56C, 140TC, and 180TC Enter Flange Inline Helical Equipment Reducers Appropriate Angle Hypoid Gear Reducers
AC motors are also various from DC motors due to the fact most AC motors do not contain brushes. This indicates that maintenance and components substitute requirements for AC motors are inclined to be drastically lowered, with most consumers normally anticipating a for a longer time average lifespan. Not like DC motors, the output speed of many sorts of AC motors is frequently determined by inverter handle – yet again, we will briefly outline a selection of prospective variations on the standard AC motor design.

China Professional Yc100L-2 Yc Collection 3HP/2.2kw Large Duty One Stage Energy Capacitor Start AC Induction Electric powered Motor for Agriculture and Household, China Factory     with Wonderful good quality