Tag Archives: motor air pump

China Hot selling 18W Single Phase Capacitor-Running Electric AC Fan Motor for Air Conditioning Units Installed in Low-Power Bedroom vacuum pump and compressor

Product Description

 

Product Description

Single Phase Capacitor-running Electric AC Fan Motor For Air Conditioning Units

The above mentioned specification is representative specification,can also be designed and manufactured according to customer requirements.

Main Technical Data of Single Phase Capacitor-running Electric AC Fan Motor For Air Conditioning Units:

Type Voltage Frequency Output Current Speed Insulation
Unit V Hz W A r/min Class
YDK-18-6 220 50 18 0.23 800 B
YDK-20-6 220 50 20 0.25 800 B
YDK-25-6 220 50 25 0.32 850 B
YDK-30-6 220 50 30 0.36 850 B
YDK-35-6 220 50 35 0.4 850 B
YDK-40-6 220 50 40 0.45 850 B
YDK-65-6 220 50 65 0.65 85 B

 

low noise,
Quiet operation,
 Little vibration
IP 44 protection level,
Automatic overload,
Thermal protection
High efficiency,
wide speed adjustment range
Ball bearing,
Reversible plug for easy rotation,
Quick installation

 

Materials
        Silent bearing , capacitor , copper wire
 

 

Application

Application
       
household split outdoor fans and similar purpose

 

Product Parameters

Drawing of Single Phase Capacitor-running Electric AC Fan Motor For Air Conditioning Units:

 

Terms

Terms:
    1. Trade Terms: FOB, CIF, CNF, EXW, DOOR TO DOOR.

             2. Payment Terms: T/T, L/C, Western Union.

                      3. Payment Condition: 50% deposit in advance, 50% balance before delivery.

                              4. Delivery Time: 15-30 days after deposit (if T/T).

                                       5. Shipping: By sea, by air and by express delivery

 

Company Profile

       HangZhou CHINAMFG Electric Co., Ltd was established in 2013. Is a manufacturer focused on innovative motor solutions for the residential and commercial CHINAMFG and refrigeration industries.
       The company has a skilled R & D team, and has more than 10 years of motor research and development, design, production and sales experience.With an annual output of 1 million motor production capacity.
       The new generation of BLDC motors and EC motors developed by CHINAMFG use a unique high flux and shock absorption design, coupled with high-quality bearings, so that the motor has more torque in the same. CARLYI branded motors have been approved by CCC, ISO9001, CE, RoHS certification.

 

Packaging & Shipping

Packing and Xihu (West Lake) Dis.:

FAQ

FAQ of Single Phase Capacitor-running Electric AC Fan Motor For Air Conditioning Units:

Q1: Are you factory?

A: Yes, we have been in designing and providing excellent motors for customers. Our factory production is all under ISO9001 quality management system.

 

Q2: How long you could prepare samples?

A: Normally 3 days if we have the sample in hand. If customized one, about a week around

 

Q3: How about batch order production?

A: Normally 15-30 days, the customized or newly developed products may take more half month.

 

Q4: Do you inspect the finished products?

A: Yes, we do inspection according to ISO9001 standard and ruled by our experienced QC staff.

 

Q5: What advantage do you have?

A: For the motors, we have long enough of 18months guarantee, and for the service, we offer 24 hours technical support and barrier-free communication.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: for Commercial Split Outdoor Fans and Similar APP
Number of Stator: Single-Phase
Function: Energy Saving, High Efficiency and Low Noise
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

Can electric motors be used in renewable energy systems like wind turbines?

Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:

Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:

  1. Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
  2. Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
  3. Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
  4. Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
  5. Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.

Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.

Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.

electric motor

What are the different types of electric motors available?

There are various types of electric motors available, each designed for specific applications and operating principles. These motors differ in their construction, power sources, and performance characteristics. Here is an overview of some common types of electric motors:

  1. DC Motors: DC (Direct Current) motors are widely used and come in different configurations. The most common types include brushed DC motors and brushless DC motors. Brushed DC motors use brushes and a commutator to switch the direction of current in the rotor, while brushless DC motors use electronic commutation. DC motors offer good speed control and torque characteristics, making them suitable for applications like robotics, electric vehicles, and small appliances.
  2. AC Motors: AC (Alternating Current) motors are classified into several types, including induction motors, synchronous motors, and universal motors. Induction motors are popular for their simplicity and reliability. They operate based on electromagnetic induction and are commonly used in industrial and residential applications. Synchronous motors operate at a constant speed and are often used in applications that require precise control, such as industrial machinery and synchronous clocks. Universal motors are designed to operate on both AC and DC power sources and are commonly found in household appliances like vacuum cleaners and power tools.
  3. Stepper Motors: Stepper motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning. They are often used in robotics, 3D printers, CNC machines, and other automated systems. Stepper motors are available in various configurations, including permanent magnet stepper motors, variable reluctance stepper motors, and hybrid stepper motors.
  4. Servo Motors: Servo motors are a type of motor that combines a DC motor with a feedback control mechanism. They are known for their precise control over position, velocity, and acceleration. Servo motors are commonly used in robotics, industrial automation, and applications that require accurate motion control, such as robotic arms, RC vehicles, and camera gimbals.
  5. Linear Motors: Linear motors are designed to produce linear motion instead of rotational motion. They operate on similar principles as rotary motors but with a different mechanical arrangement. Linear motors find applications in high-speed transportation systems, cutting machines, and other systems that require linear motion without the need for mechanical conversion from rotary to linear motion.
  6. Haptic Motors: Haptic motors, also known as vibration motors, are small motors used to create tactile feedback or vibrations in electronic devices. They are commonly found in smartphones, game controllers, wearable devices, and other gadgets that require haptic feedback to enhance the user experience.

These are just a few examples of the different types of electric motors available. Each type has its own advantages, limitations, and specific applications. The selection of an electric motor depends on factors such as the required torque, speed, control, efficiency, and the specific needs of the application at hand.

China Hot selling 18W Single Phase Capacitor-Running Electric AC Fan Motor for Air Conditioning Units Installed in Low-Power Bedroom   vacuum pump and compressor	China Hot selling 18W Single Phase Capacitor-Running Electric AC Fan Motor for Air Conditioning Units Installed in Low-Power Bedroom   vacuum pump and compressor
editor by CX 2024-04-09

China Best Sales 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric AC  Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower vacuum pump diy

Product Description

Product Description

Y2 SERIES THREE PHASE ELECTRIC MOTOR

Frame number: 63 ~ 355 Power: 0.12 ~ 315KW

Working system: S1

Applications: General purpose including cutting, machine, pumps, fans, conveyors, Agricultural Machinery and food machinery 
Features:Good-looking appearance, High efficiency and energy saving, low noise and little vibration. F insulation class, IP54 or IP55 protection class

OPERATING CONDITIONS:
Ambient temperature: -15senti degree≤ 0≤ 40senti degree
Altitude: Not exceeding 1000 meters
Rated voltage: 380V, 220/380V, 380/660V, 400V, 415V
Rated frequency: 50Hz / 60 Hz

Connection:
Y Start-connection for 3KW and below
Delta-connection for 4KW or more
Duty / Rating: Continuous (S1)
Cooling type: IC411

Technical parameter:                                                                                                   

Output
(KW)

Type

Amps
(A)

Speed
(R/min)

Eff.
%

p.f.

RT
N.m

     

Noise LwdB
(A)

Weight
(Kg)

380V 50HZ 2P

0.18

Y2-631-2

0.5

2800

65.0

0.80

00.61

2.2

2.2

5.5

61

14

0.25

Y2-632-2

0.7

2800

68.0

0.81

0.96

2.2

2.2

5.5

61

14.5

0.37

Y2-711-2

1.0

2800

70.0

0.81

1.26

2.2

2.2

6.1

64

15

0.55

Y2-712-2

1.4

2800

73.0

0.82

1.88

2.2

2.3

6.1

64

15.5

0.75

Y2-801-2

1.8

2825

75.0

0.83

2.54

2.2

2.3

6.1

67

16.5

1.1

Y2-802-2

2.6

2825

77.0

0.84

3.72

2.2

2.3

7.0

67

17.5

1.5

Y2-90S-2

3.4

2840

79.0

0.84

5.04

2.2

2.3

7.0

72

21

2.2

Y2-90L-2

4.9

2840

81.0

0.85

7.40

2.2

2.3

7.0

72

25

3

Y2-100L-2

6.3

2880

83.0

0.87

9.95

2.2

2.3

7.5

76

33

4

Y2-112M-2

8.1

2890

85.0

0.88

13.22

2.2

2.3

7.5

77

41

5.5

Y2-132S1-2

11.0

2900

86.0

0.88

18.11

2.2

2.3

7.5

80

63

7.5

Y2-132S2-2

14.9

2900

87.0

0.88

24.70

2.2

2.3

7.5

80

70

11

Y2-160M1-2

21.3

2930

88.0

0.89

35.85

2.2

2.3

7.5

86

110

15

Y2-160M2-2

28.8

2930

89.0

0.89

48.89

2.2

2.3

7.5

86

120

18.5

Y2-160L-2

34.7

2930

90.5

0.90

60.30

2.2

2.3

7.5

86

135

22

Y2-180M-2

41.0

2940

91.2

0.90

71.46

2.0

2.3

7.5

89

165

30

Y2-200L1-2

55.5

2950

92.0

0.90

97.12

2.0

2.3

7.5

92

218

37

Y2-200L2-2

67.9

2950

92.3

0.90

119.78

2.0

2.3

7.5

92

230

45

Y2-225M-2

82.3

2970

92.3

0.90

144.70

2.0

2.3

7.5

92

280

55

Y2-250M-2

100.4

2970

92.5

0.90

176.85

2.0

2.3

7.5

93

365

75

Y2-280S-2

134.4

2970

93.2

0.91

241.16

2.0

2.3

7.5

94

495

90

Y2-280M-2

160.2

2970

93.8

0.91

289.39

2.0

2.3

7.5

94

565

110

Y2-315S-2

195.4

2980

94.0

0.91

352.51

1.8

2.2

7.1

96

890

132

Y2-315M-2

233.2

2980

94.5

0.91

423.02

1.8

2.2

7.1

96

980

160

Y2-315L1-2

279.3

2980

94.6

0.92

512.75

1.8

2.2

7.1

99

1055

200

Y2-315L2-2

348.4

2980

94.8

0.92

640.94

1.8

2.2

7.1

99

1110

250

Y2-355M-2

433.2

2985

95.3

0.92

799.83

1.6

2.2

7.1

103

1900

315

Y2-355L-2

544.2

2985

95.6

0.92

1007.79

1.6

2.2

7.1

103

2300

380V 50HZ 4P

0.12

Y2-631-4

0.4

1400

57.0

0.72

0.82

2.1

2.2

4.4

52

13

0.18

Y2-632-4

0.6

1400

60.0

0.73

1.23

2.1

2.2

4.4

52

13.5

0.25

Y2-711-4

0.8

1400

65.0

0.74

1.71

2.1

2.2

5.2

55

14

0.37

Y2-712-4

1.1

1400

67.0

0.75

2.54

2.1

2.2

5.2

55

14.5

0.55

Y2-801-4

1.6

1390

71.0

0.75

3.78

2.4

2.3

5.2

58

15

0.75

Y2-802-4

2.0

1490

73.0

0.77

5.15

2.4

2.3

6.0

58

16

1.1

Y2-90S-4

2.0

1400

75.0

0.77

7.50

2.3

2.3

6.0

61

23

1.5

Y2-90L-4

3.7

1420

78.0

0.79

10.23

2.3

2.3

6.0

61

25

2.2

Y2-100L1-4

5.2

1420

80.0

0.81

14.80

2.3

2.3

7.0

64

33

3.

Y2-100L2-4

6.8

1420

82.0

0.82

20.18

2.3

2.3

7.0

64

35

4.

Y2-112M-4

8.8

1440

84.0

0.82

26.53

2.3

2.3

7.0

65

41

5.5

Y2-132S-4

11.8

1440

85.0

0.83

36.48

2.3

2.3

7.0

71

65

7.5

Y2-132M-S

15.6

1440

87.0

0.84

49.74

2.2

2.3

7.0

71

76

11

Y2-160M-4

22.3

1460

88.0

0.85

71.59

2.2

2.3

7.0

75

118

15

Y2-160L-4

30.1

1460

89.0

0.85

98.12

2.2

2.3

7.5

75

132

18.5

Y2-180M-4

36.5

1470

90.5

0.85

120.19

2.2

2.3

7.5

76

164

22

Y2-1180L-4

43.2

1470

91.0

0.85

142.93

2.2

2.3

7.5

76

182

30

Y2-200L-4

57.6

1480

92.0

0.86

193.68

2.2

2.3

7.2

79

245

37

Y2-225S-4

69.9

1480

92.5

0.87

238.87

2.2

2.3

7.2

81

258

45

Y2-225M-4

84.7

1480

92.8

0.87

290.37

2.2

2.3

7.2

81

290

55

Y2-250M-4

103.3

1480

93.0

0.87

354.90

2.2

2.3

7.2

83

388

75

Y2-280S-4

139.6

1480

93.8

0.87

483.95

2.2

2.3

7.2

86

510

90

Y2-280M-4

166.9

1485

94.2

0.87

578.79

2.2

2.3

7.2

86

606

110

Y2-315S-4

201.0

1485

94.5

0.88

707.41

2.1

2.2

6.9

93

910

132

Y2-315M-4

240.4

1485

94.8

0.88

848.89

2.1

2.2

6.9

93

1000

160

Y2-315L1-4

287.8

1485

94.9

0.89

1571.96

2.1

2.2

6.9

97

1055

200

Y2-315L2-4

359.4

1485

95.0

0.89

1286.20

2.1

2.2

6.9

97

1128

250

Y2-355M-4

442.9

1490

95.3

0.90

1602.35

2.1

2.2

6.9

101

1700

315

Y2-355L-4

556.2

1490

95.6

0.90

2018.96

2.1

2.2

6.9

101

1900

380V 50HZ 6P

0.18

Y2-711-6

0.8

900

56.0

0.60

1.91

1.9

2.0

4.0

52

14

0.25

Y2-711-6

0.9

900

59.0

0.68

2.65

1.9

2.0

4.0

52

14.5

0.37

Y2-801-6

1.3

900

62.0

0.70

3.93

1.9

2.0

4.7

54

15

0.55

Y2-802-6

1.8

900

65.0

0.72

5.84

1.9

2.1

4.7

54

16

0.75

Y2-90S-6

2.3

910

69.0

0.72

7.87

2.0

2.1

5.5

57

19

1.1

Y2-90L-6

3.2

910

72.0

0.73

11.54

2.0

2.1

5.5

57

22

1.5

Y2-100L-6

3.9

940

76.0

0.76

15.24

2.0

2.1

5.5

61

32

2.2

Y2-112M-6

5.6

940

79.0

0.76

22.35

2.1

2.1

6.5

65

41

3

Y2-132S-6

7.4

960

81.0

0.76

29.84

2.1

2.1

6.5

69

63

4

Y2-132M1-6

9.9

960

82.0

0.76

39.79

2.1

2.1

6.5

69

72

5.5

Y2-132M-6

12.9

960

84.0

0.77

54.71

2.1

2.1

6.5

69

81

7.5

Y2-160M-6

16.9

970

86.0

0.78

73.84

2.0

2.1

6.5

73

118

11

Y2-160L-6

24.2

970

87.5

0.79

108.30

2.0

2.1

6.5

73

145

15

Y2-180L-6

31.6

970

89.0

0.81

147.68

2.1

2.1

7.0

73

178

18.5

Y2-200L1-6

38.6

970

90.0

0.81

182.14

2.1

2.1

7.0

76

200

22

Y2-200L2-6

44.7

970

90.0

0.83

216.60

2.1

2.1

7.0

76

228

30

Y2-225M-6

59.3

980

91.5

0.84

292.35

2.0

2.1

7.0

76

265

37

Y2-250M-6

71.1

980

92.0

0.86

360.56

2.1

2.1

7.0

78

370

45

Y2-280S-6

85.9

980

92.5

0.86

438.52

2.1

2.0

7.0

80

490

55

Y2-280M-6

104.7

980

92.8

0.86

535.97

2.1

2.0

7.0

80

540

75

Y2-315S-6

141.7

980

93.5

0.86

730.87

2.0

2.0

7.0

85

900

90

Y2-315M-6

169.5

985

93.8

0.86

872.59

2.0

2.0

7.0

85

980

110

Y2-315L1-6

206.7

985

94.0

0.86

1066.50

2.0

2.0

6.7

85

1045

132

Y2-315L2-6

244.7

985

94.2

0.87

1279.80

2.0

2.0

6.7

85

1100

160

Y2-355M1-6

292.3

990

94.5

0.88

1543.43

1.9

2.0

6.7

92

1440

200 Y2-355M2-6 364.6 990 94.7 0.88 1929.29 1.9 2.0 6.7 92 1600

250

Y2-355L-6

454.8

990

94.9

0.88

2411.62

1.9

2.0

6.7

92

1700

PRODUCTION PROCESSING:
PAINTING COLOR CODE:

Application: Universal
Operating Speed: Low Speed
Number of Stator: Three-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Squirrel-Cage
Casing Protection: Protection Type
Customization:
Available

|

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

How do electric motors handle variations in voltage and frequency?

Electric motors are designed to handle variations in voltage and frequency to ensure proper operation and performance. The ability of electric motors to adapt to different voltage and frequency conditions depends on their design characteristics and the presence of additional control devices. Here’s a detailed explanation of how electric motors handle variations in voltage and frequency:

  1. Voltage Variations: Electric motors can handle certain variations in voltage without significant issues. The motor’s design factors in a voltage tolerance range to accommodate fluctuations in the power supply. However, excessive voltage variations beyond the motor’s tolerance can affect its performance and lead to problems such as overheating, increased energy consumption, and premature failure. To mitigate the impact of voltage variations, electric motors may incorporate the following features:
    • Voltage Regulation: Some electric motors, especially those used in industrial applications, may include voltage regulation mechanisms. These mechanisms help stabilize the motor’s voltage, compensating for slight voltage fluctuations and maintaining a relatively steady supply.
    • Voltage Protection Devices: Motor control circuits often incorporate protective devices such as voltage surge suppressors and voltage regulators. These devices help prevent voltage spikes and transient voltage variations from reaching the motor, safeguarding it against potential damage.
    • Voltage Monitoring: In certain applications, voltage monitoring systems may be employed to continuously monitor the motor’s supply voltage. If voltage variations exceed acceptable limits, the monitoring system can trigger alarms or take corrective actions, such as shutting down the motor to prevent damage.
  2. Frequency Variations: Electric motors are designed to operate at a specific frequency, typically 50 or 60 Hz, depending on the region. However, variations in the power system frequency can occur due to factors such as grid conditions or the use of frequency converters. Electric motors handle frequency variations in the following ways:
    • Constant Speed Motors: Most standard electric motors are designed for operation at a fixed speed corresponding to the rated frequency. When the frequency deviates from the rated value, the motor’s rotational speed changes proportionally. This can affect the motor’s performance, especially in applications where precise speed control is required.
    • Variable Frequency Drives (VFDs): Variable frequency drives are electronic devices that control the speed of an electric motor by varying the supplied frequency and voltage. VFDs allow electric motors to operate at different speeds and handle frequency variations effectively. By adjusting the frequency and voltage output, VFDs enable precise control of motor speed and torque, making them ideal for applications where speed control and energy efficiency are critical.
    • Inverter Duty Motors: Inverter duty motors are specifically designed to handle the frequency variations encountered when operated with VFDs. These motors feature improved insulation systems and robust designs to withstand the harmonic distortions and voltage spikes associated with VFD operation.
  3. Motor Protection: Electric motors may incorporate protective features to safeguard against adverse effects caused by voltage and frequency variations. These protection mechanisms include:
    • Thermal Protection: Motors often include built-in thermal protection devices such as thermal switches or sensors. These devices monitor the motor’s temperature and can automatically shut it down if it exceeds safe limits due to voltage or frequency variations that lead to excessive heating.
    • Overload Protection: Overload protection devices, such as overload relays, are employed to detect excessive currents drawn by the motor. If voltage or frequency variations cause the motor to draw abnormal currents, the overload protection device can interrupt the power supply to prevent damage.
    • Voltage/Frequency Monitoring: Advanced motor control systems may incorporate voltage and frequency monitoring capabilities. These systems continuously measure and analyze the motor’s supply voltage and frequency, providing real-time feedback on any deviations. If voltage or frequency variations exceed predetermined thresholds, the monitoring system can activate protective actions or trigger alarms for further investigation.

In summary, electric motors handle variations in voltage and frequency through design considerations, additional control devices, and protective mechanisms. Voltage variations are managed through voltage regulation, protective devices, and monitoring systems. Frequency variations can be accommodated by using variable frequency drives (VFDs) or employing inverter duty motors. Motor protection features, such as thermal protection and overload relays, help safeguard the motor against adverse effects caused by voltage and frequency variations. These measures ensure the reliable and efficient operation of electric motors under different voltage and frequency conditions.

electric motor

Can you explain the basic principles of electric motor operation?

An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:

  1. Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
  3. Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
  4. Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
  5. Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.

In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.

China Best Sales 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric AC  Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump diyChina Best Sales 0.12kw-315kw Y2 Series Three Phase Asynchronous Electric AC  Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump diy
editor by CX 2023-11-17

China best GOST Standard Asynchronous AC Electric Motor for Blower Axial Fan Water Pump Air Compressor Gear Box with Best Sales

Item Description

GOST Normal Asynchronous AC Electric powered Motor for Blower Axial Fan Water Pump Air Compressor Gear Box

 

Frame size 56A- 355M
Pole two-10
Rated voltage 380V
Frequency 50Hz
Power .18kw-315Kw
Protection degree IP54
Cooling method IC411
Insulation class F
Ambient Temperature -15°C~40°C
Altitude not exceed 1000 Meter
Working Duty S1(Constant)

Item Description

Manufacturing facility and Production Line

Software fields

machine equipment, water pump, blower, compressor, and transportation, print, agriculture, food and much more industries.

Certifications 

FAQ
 

Q: What is your MOQ of this product?
A: 5PCS.
     For the first time cooperation, we acknowledge demo sample buy.
 
Q: What is your payment conditions?
A: 30% T/T deposit, 70% harmony just before cargo or L/C at sight.
 
Q: What is actually the delivery time?
A: twenty five-thirty times following obtaining your L/C or T/T deposit.

 

Q: Can we utilised our personal manufacturer on motors ?
A: Certain, we can supply OEM support,
     manufacture with your authorized manufacturer.

Q: How lengthy is your guarantee?
A: 12 months right after getting B/L.

Staff

 

Motor Summary

An AC motor is a typical kind of electric motor that is pushed by alternating recent. As the most productive sensible motors for each day industrial programs (as effectively as hobbyist projects, home products, and all other skilled tools and buyer items), AC motors provide a comparatively successful method of making mechanical power from a basic electrical input signal.
DC motors use strength from batteries or other producing sources that provide a continuous voltage. A DC motor is composed of a number of components, the most well-known of which incorporate bearings, shafts, and gearboxes or gears. DC motors give better velocity variation and control and produce much more torque than AC motors. The two sorts of DC motors incorporate Brushed motors: Brushed motors are one of the oldest types and are internally commutated motors pushed by DC current. A brushed motor is made up of a rotor, brushes, and a shaft. The demand and polarity of the brushes control the path and velocity of the motor. Brushless Motors: In current a long time, brushless motors have become well-known for numerous purposes, largely due to the fact of their performance. Brushless motors are constructed in the same way as brushed motors, minus the brushes of system. Brushless motors also consist of focused circuitry to control speed and path. In brushless motors, magnets are mounted about the rotor, an efficiency-boosting configuration.

China best GOST Standard Asynchronous AC Electric Motor for Blower Axial Fan Water Pump Air Compressor Gear Box     with Best Sales