Tag Archives: brake motor

China high quality ZD Electric Brake / Fan Connection Box AC Induction Gear Motor With or without flange vacuum pump diy

Product Description

Model Selection

ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Detailed Photos

 

Product Parameters

Features:
1) Dimensions: 90mm
2) Power: 120W
3) Voltage: 110V, 220V
4) Speed: 1250, 1300, 2750, 2800rpm
5) Reduction ratio: 3~ 750K
6) With or without flange

MORE SPECIFICATION FOR AC MOTORS: 

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE INDUCTION MOTOR / REVERSIBLE MOTOR / TORQUE MOTOR / SPEED CONTROL MOTOR
SERIES K series
OUTPUT POWER 3 W / 6W / 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W (can be customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; round shaft, D-cut shaft, key-way shaft (can be customized)
Voltage type Single phase 100-120V 50/60Hz 4P Single phase 200-240V 50/60Hz 4P
Three phase 200-240V 50/60Hz Three phase 380-415V 50/60Hz 4P
Three phase 440-480V 60Hz 4P Three phase 200-240/380-415/440-480V 50/60/60Hz 4P
Accessories Terminal box type / with Fan / thermal protector / electromagnetic brake
Above 60 W, all assembled with fan
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
GEAR RATIO MINIMUM 3:1—————MAXIMUM 750:1
GEARBOX TYPE PARALLEL SHAFT GEARBOX AND STRENGTH TYPE
Right angle hollow worm shaft Right angle spiral bevel hollow shaft L type hollow shaft
Right angle CHINAMFG worm shaft Right angle spiral bevel CHINAMFG shaft L type CHINAMFG shaft
K2 series air tightness improved type
Certification CCC  CE  UL  RoHS

Other Related Products

Click here to find what you are looking for:

Customized Product Service

Company Profile

 

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge. 

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you ! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2
Starting Mode: Direct on-line Starting
Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

What advancements in electric motor technology have improved energy efficiency?

Advancements in electric motor technology have played a crucial role in improving energy efficiency, leading to more sustainable and environmentally friendly applications. Here’s a detailed explanation of some key advancements in electric motor technology that have contributed to enhanced energy efficiency:

  1. High-Efficiency Motor Designs: One significant advancement in electric motor technology is the development of high-efficiency motor designs. These designs focus on reducing energy losses during motor operation, resulting in improved overall efficiency. High-efficiency motors are engineered with optimized stator and rotor geometries, reduced core losses, and improved magnetic materials. These design enhancements minimize energy wastage and increase the motor’s efficiency, allowing it to convert a higher percentage of electrical input power into useful mechanical output power.
  2. Premium Efficiency Standards: Another notable advancement is the establishment and adoption of premium efficiency standards for electric motors. These standards, such as the International Electrotechnical Commission (IEC) IE3 and NEMA Premium efficiency standards, set minimum efficiency requirements for motors. Manufacturers strive to meet or exceed these standards by incorporating innovative technologies and design features that enhance energy efficiency. The implementation of premium efficiency standards has led to the widespread availability of more efficient motors in the market, encouraging energy-conscious choices and reducing energy consumption in various applications.
  3. Variable Speed Drives: Electric motor systems often operate under varying load conditions, and traditional motor designs operate at a fixed speed. However, the development and adoption of variable speed drives (VSDs) have revolutionized motor efficiency. VSDs, such as frequency converters or inverters, allow the motor’s speed to be adjusted according to the load requirements. By operating motors at the optimal speed for each task, VSDs minimize energy losses and significantly improve energy efficiency. This technology is particularly beneficial in applications with variable loads, such as HVAC systems, pumps, and conveyors.
  4. Improved Motor Control and Control Algorithms: Advanced motor control techniques and algorithms have contributed to improved energy efficiency. These control systems employ sophisticated algorithms to optimize motor performance, including speed control, torque control, and power factor correction. By precisely adjusting motor parameters based on real-time operating conditions, these control systems minimize energy losses and maximize motor efficiency. Additionally, the integration of sensor technology and feedback loops enables closed-loop control, allowing motors to respond dynamically and adaptively to changes in load demand, further enhancing energy efficiency.
  5. Use of Permanent Magnet Motors: Permanent magnet (PM) motors have gained popularity due to their inherent high energy efficiency. PM motors utilize permanent magnets in the rotor, eliminating the need for rotor windings and reducing rotor losses. This design enables PM motors to achieve higher power densities, improved efficiency, and enhanced performance compared to traditional induction motors. The use of PM motors is particularly prevalent in applications where high efficiency and compact size are critical, such as electric vehicles, appliances, and industrial machinery.
  6. Integration of Advanced Materials: Advances in materials science have contributed to improved motor efficiency. The utilization of advanced magnetic materials, such as rare-earth magnets, allows for stronger and more efficient magnetic fields, resulting in higher motor efficiency. Additionally, the development of low-loss electrical steel laminations and improved insulation materials reduces core losses and minimizes energy wastage. These advanced materials enhance the overall efficiency of electric motors, making them more energy-efficient and environmentally friendly.

The advancements in electric motor technology, including high-efficiency motor designs, premium efficiency standards, variable speed drives, improved motor control, permanent magnet motors, and advanced materials, have collectively driven significant improvements in energy efficiency. These advancements have led to more efficient motor systems, reduced energy consumption, and increased sustainability across a wide range of applications, including industrial machinery, transportation, HVAC systems, appliances, and renewable energy systems.

electric motor

Can you explain the basic principles of electric motor operation?

An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:

  1. Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
  3. Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
  4. Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
  5. Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.

In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.

China high quality ZD Electric Brake / Fan Connection Box AC Induction Gear Motor With or without flange   vacuum pump diyChina high quality ZD Electric Brake / Fan Connection Box AC Induction Gear Motor With or without flange   vacuum pump diy
editor by CX 2024-05-09

China best Yej Electromagnetic Brake Motor Three Phase Induction AC Electric Brake Motors vacuum pump connector

Product Description

Electromagnetic Brake Motor
———————————————————————————————

Applications
Widely used for driving machine tools, printing machinery, forging press, transport machinery, packing machinery, food machinery, construction machinery, and woodworking machinery where quick stop, accurate braking, reciprocated operation are demanded.

General Description

  • Frame sizes: 80 to 315      
  • Rated output: 0.18 to 220kW
  • Voltage: 380V                    
  • Frequency: 50Hz
  • Efficiency levels: IE1          
  • Enclosure: IC411 – TEFC  
  • Degree of protection: IP55 (motor) & IP23 (brake)
  • Braking mode: Power failure brake
  • Rectification code: One-half period rectification    

Features
Electromagnetic brake, fast braking, energy saving, simple structure, exact position.

Optional Features:
Electrical:
Insulation Class:H
Thermal Protection: PTC Thermistor, Thermostat or PT100
Mechanical:
Others mountings
Sealing:Lip seal, Oil seal
Space Heater
Drain Hole

Model Output
kW
Rated Ampere
A
RPM Eff.% Power Factor Rated Torque
N.m
LRT
FLT
Tst
TN
LRA
FLA
Ist
IN
BDT
FLT
Tmax
TN
dB(A)
Synchronous speed   3000 r/min
YE3EJ80M1-2 0.75 1.7 2870 80.7 0.83 2.50 2.2 7.0 2.3 67
YE3EJ80M2-2 1.1 2.4 2875 82.7 0.83 3.65 2.2 7.3 2.3 71
YE3EJ90S-2 1.5 3.2 2880 84.2 0.84 4.97 2.2 7.6 2.3 75
YE3EJ90L-2 2.2 4.6 2880 85.9 0.85 7.29 2.2 7.6 2.3 75
YE3EJ100L-2 3 6.0 2880 87.1 0.87 9.95 2.2 7.8 2.3 79
YE3EJ112M-2 4 7.8 2915 88.1 0.88 13.1 2.2 8.3 2.3 79
YE3EJ132S1-2 5.5 10.6 2935 89.2 0.88 17.9 2.0 8.3 2.3 83
YE3EJ132S2-2 7.5 14.4 2930 90.1 0.88 24.4 2.0 7.9 2.3 83
YE3EJ160M1-2 11 20.6 2950 91.2 0.89 35.6 2.0 8.1 2.3 87
YE3EJ160M2-2 15 27.9 2945 91.9 0.89 48.6 2.0 8.1 2.3 87
YE3EJ160L-2 18.5 34.2 2945 92.4 0.89 60.0 2.0 8.2 2.3 87
YE3EJ180M-2 22 41.8 2950 92.7 0.89 71.2 2.0 8.2 2.3 92
YE3EJ200L1-2 30 54.7 2965 93.3 0.89 96.6 2.0 7.6 2.3 92
YE3EJ200L2-2 37 67.4 2965 93.7 0.89 119 2.0 7.6 2.3 95
YE3EJ225M-2 45 84.4 2965 94.0 0.90 145 2.0 7.7 2.3 97
YE3EJ250M-2 55 98.5 2975 94.3 0.90 177 2.0 7.7 2.3 98
YE3EJ280S-2 75 134 2975 94.7 0.90 241 1.8 7.1 2.3 99
YE3EJ280M-2 90 160 2975 95.0 0.90 289 1.8 7.1 2.3 99
YE3EJ315S-2 110 197 2975 95.2 0.90 353 1.8 7.1 2.3 101
YE3EJ315M-2 132 236 2975 95.4 0.90 424 1.8 7.1 2.3 101
YE3EJ315L1-2 160 282 2975 95.6 0.91 514 1.8 7.2 2.3 103
YE3EJ315L2-2 200 352 2975 95.8 0.91 642 1.8 7.2 2.2 103

Model Output
kW
Rated Ampere
A
RPM Eff.% Power Factor Rated Torque
N.m
LRT
FLT
Tst
TN
LRA
FLA
Ist
IN
BDT
FLT
Tmax
TN
dB(A)
Synchronous speed   1500 r/min
YE3EJ80M1-4 0.55 1.4 1430 80.6 0.75 3.67 2.3 6.0 2.3 61
YE3EJ80M2-4 0.75 1.8 1430 82.5 0.75 5.01 2.3 6.6 2.3 61
YE3EJ90S-4 1.1 2.6 1430 84.1 0.76 7.35 2.3 6.8 2.3 67
YE3EJ90L-4 1.5 3.5 1440 85.3 0.77 9.95 2.3 7.0 2.3 67
YE3EJ100L1-4 2.2 4.8 1440 86.7 0.81 14.6 2.3 7.6 2.3 70
YE3EJ100L2-4 3 6.3 1440 87.7 0.82 19.9 2.3 7.6 2.3 70
YE3EJ112M-4 4 8.4 1455 88.6 0.82 26.3 2.2 7.8 2.3 74
YE3EJ132S-4 5.5 11.2 1465 89.6 0.83 35.9 2.0 7.9 2.3 78
YE3EJ132M-4 7.5 15.0 1465 90.4 0.84 48.9 2.0 7.5 2.3 78
YE3EJ160M-4 11 21.5 1470 91.4 0.85 71.5 2.0 7.7 2.3 82
YE3EJ160L-4 15 28.8 1470 92.1 0.86 97.4 2.0 7.8 2.3 82
YE3EJ180M-4 18.5 35.3 1470 92.6 0.86 120 2.0 7.8 2.3 82
YE3EJ180L-4 22 41.8 1470 93.0 0.86 143 2.0 7.8 2.3 82
YE3EJ200L-4 30 56.6 1475 93.6 0.86 194 2.0 7.3 2.3 84
YE3EJ225S-4 37 69.6 1480 93.9 0.86 239 2.0 7.4 2.3 84
YE3EJ225M-4 45 84.4 1480 94.2 0.86 290 2.0 7.4 2.3 84
YE3EJ250M-4 55 103 1485 94.6 0.84 354 2.0 7.4 2.3 86
YE3EJ280S-4 75 136 1490 95.0 0.88 481 2.0 6.9 2.3 89
YE3EJ280M-4 90 163 1490 95.2 0.88 577 2.0 6.9 2.3 89
YE3EJ315S-4 110 199 1485 95.4 0.89 707 2.0 7.0 2.2 96
YE3EJ315M-4 132 241 1485 95.6 0.88 849 2.0 7.0 2.2 96
YE3EJ315L1-4 160 288 1485 95.8 0.89 1571 2.0 7.1 2.2 97
YE3EJ315L2-4 200 359 1485 96.0 0.90 1286 2.0 7.1 2.2 97
Synchronous speed  1000 r/min
YE3EJ80M1-6 0.37 1.2 910 68.0 0.70 3.88 1.9 5.5 2.1 58
YE3EJ80M2-6 0.55 1.6 925 72.0 0.71 5.68 1.9 5.5 2.1 58
YE3EJ90S-6 0.75 2.0 945 78.9 0.71 7.59 2.0 6.0 2.1 61
YE3EJ90L-6 1.1 2.8 950 81.0 0.73 11.1 2.0 6.0 2.1 65
YE3EJ100L-6 1.5 3.8 950 82.5 0.73 15.1 2.0 6.5 2.1 67
YE3EJ112M-6 2.2 5.4 965 84.3 0.74 21.8 2.0 6.6 2.1 74
YE3EJ132S-6 3 7.2 975 85.6 0.74 29.4 1.9 6.8 2.1 71
YE3EJ132M1-6 4 9.5 975 86.8 0.74 39.2 1.9 6.8 2.1 71
YE3EJ132M2-6 5.5 12.7 975 88.0 0.75 53.9 1.9 7.0 2.1 71
YE3EJ160M-6 7.5 16.2 980 89.1 0.79 73.1 2.0 7.0 2.1 75
YE3EJ160L-6 11 23.1 980 90.3 0.80 107 2.0 7.2 2.1 75
YE3EJ180L-6 15 30.9 980 91.2 0.81 146 1.9 7.3 2.1 78
YE3EJ200L1-6 18.5 37.8 985 91.7 0.81 179 1.9 7.3 2.1 78
YE3EJ200L2-6 22 44.8 985 92.2 0.81 213 1.9 7.4 2.1 78

Model Output
kW
Rated Ampere
A
RPM Eff.% Power Factor Rated Torque
N.m
LRT
FLT
Tst
TN
LRA
FLA
Ist
IN
BDT
FLT
Tmax
TN
dB(A)
Synchronous speed   1000 r/min
YE3EJ225M-6 30 59.1 985 92.9 0.83 291 1.9 6.9 2.1 81
YE3EJ250M-6 37 71.7 985 93.3 0.84 359 1.9 7.1 2.1 83
YE3EJ280S-6 45 85.8 990 93.7 0.85 434 1.9 7.3 2.0 85
YE3EJ280M-6 55 103 990 94.1 0.86 531 1.9 7.3 2.0 85
YE3EJ315S-6 75 145 990 94.6 0.84 723 1.9 6.6 2.0 90
YE3EJ315M-6 90 171 990 94.9 0.85 868 1.9 6.7 2.0 90
YE3EJ315L1-6 110 209 990 95.1 0.85 1061 1.9 6.7 2.0 90
YE3EJ315L2-6 132 247 990 95.4 0.86 1273 1.9 6.8 2.0 90
Synchronous speed   750 r/min
YE3EJ80M1-8 0.18 0.80 700 56.0 0.61 2.46 1.8 3.3 1.9 54
YE3EJ80M2-8 0.25 1.1 700 59.0 0.61 3.41 1.8 3.3 1.9 54
YE3EJ90S-8 0.37 1.4 695 66.0 0.61 5.08 1.8 4.0 2.0 58
YE3EJ90L-8 0.55 2.0 695 70.0 0.61 7.56 1.8 4.0 2.0 58
YE3EJ100L1-8 0.75 2.3 705 73.5 0.67 10.2 1.8 4.0 2.0 61
YE3EJ100L2-8 1.1 3.2 705 76.5 0.69 14.9 1.8 4.0 2.0 61
YE3EJ112M-8 1.5 4.2 715 77.5 0.70 20.0 1.8 4.0 2.0 63
YE3EJ132S-8 2.2 5.9 730 80.0 0.71 28.8 1.8 5.5 2.2 66
YE3EJ132M-8 3 7.6 730 82.5 0.73 39.2 1.8 5.5 2.2 66
YE3EJ160M1-8 4 9.8 725 85.0 0.73 52.7 1.9 6.0 2.2 69
YE3EJ160M2-8 5.5 13.1 725 86.0 0.74 72.4 1.9 6.0 2.2 69
YE3EJ160L-8 7.5 17.4 730 87.5 0.75 98.1 1.9 6.0 2.2 72
YE3EJ180L-8 11 25.0 725 89.0 0.75 145 1.9 6.0 2.2 72
YE3EJ200L-8 15 33.2 730 90.4 0.76 196 2.0 6.5 2.2 75
YE3EJ225S-8 18.5 40.6 735 91.2 0.76 240 2.0 6.5 2.2 75
YE3EJ225M-8 22 46.8 735 91.5 0.78 286 2.0 6.5 2.2 75
YE3EJ250M-8 30 62.6 735 92.2 0.79 390 1.9 6.5 2.0 77
YE3EJ280S-8 37 76.5 740 93.0 0.79 478 1.8 6.0 2.0 78
YE3EJ280M-8 45 92.6 740 93.5 0.79 581 1.8 6.0 2.0 78
YE3EJ315S-8 55 111 740 93.8 0.81 710 1.8 6.5 2.0 84
YE3EJ315M-8 75 151 740 94.0 0.81 968 1.8 6.5 2.0 85
YE3EJ315L1-8 90 181 740 94.5 0.81 1161 1.8 6.5 2.0 85
YE3EJ315L2-8 110 218 740 94.8 0.82 1420 1.8 6.5 2.0 85
Synchronous speed   600 r/min
YE3EJ315S-10 45 99.6 590 92.0 0.75 728 1.5 6.0 2.0 85
YE3EJ315M-10 55 121 590 92.5 0.75 890 1.5 6.0 2.0 85
YE3EJ315L1-10 75 162 590 93.0 0.76 1214 1.5 6.0 2.0 85
YE3EJ315L2-10 90 191 590 93.4 0.77 1457 1.5 6.0 2.0 85

Mounting 
Conventional mounting type and suitable frame size are given in following table(with “√”)

Frame basic type derived type
B3 B5 B35 V1 V3 V5 V6 B6 B7 B8 V15 V36 B14 B34 V18
80~112
132~160
180~280
315

If there is no other request in the order or agreement, terminal box standard position is at the right side of the frame; data above may be changed without prior notice.
Site

Show Room


Certificates

Premium Service

Quality Control

Wannan Motor Production Workshop and Flow Chart

Hundreds of Certificates, Honors and more COMPANY information please go to “ABOUT US”
—————————————————————————————————————————
Welcome to contact us directly…
wnmmotor
https://youtu.be/frVvg3yQqNM

CHINAMFG MOTOR      INDUSTRIAL SOLUTIONS /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving, Control, Brake Motor
Casing Protection: Closed Type
Number of Poles: 2
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

Can electric motors be adapted for use in both residential and industrial settings?

Yes, electric motors can be adapted for use in both residential and industrial settings. Their versatility, efficiency, and wide range of power options make them suitable for various applications in both environments. Here’s a detailed explanation of how electric motors can be adapted for use in residential and industrial settings:

  1. Residential Applications: Electric motors find numerous applications in residential settings, where their compact size, quiet operation, and energy efficiency are highly valued. Some common residential uses of electric motors include:
    • Home Appliances: Electric motors power a wide range of home appliances such as refrigerators, washing machines, dishwashers, vacuum cleaners, fans, and air conditioners. These motors are designed to provide efficient and reliable operation while minimizing noise and energy consumption.
    • Garage Door Openers: Electric motors are commonly used in residential garage door openers, providing convenient and automated access to the garage.
    • HVAC Systems: Electric motors drive the fans and compressors in heating, ventilation, and air conditioning (HVAC) systems, contributing to efficient climate control and indoor comfort.
    • Pool Pumps: Electric motors power pool pumps, circulating water and maintaining water quality in residential swimming pools.
    • Power Tools: Electric motors are integral components of various power tools used in residential settings, including drills, saws, and trimmers.
  2. Industrial Applications: Electric motors are extensively used in industrial settings due to their reliability, controllability, and adaptability to various industrial processes. Some common industrial applications of electric motors include:
    • Manufacturing Machinery: Electric motors drive a wide range of manufacturing machinery, including conveyor systems, pumps, compressors, mixers, and agitators. These motors are capable of providing precise speed and torque control, enhancing productivity and process efficiency.
    • Industrial Fans and Blowers: Electric motors power fans and blowers for ventilation, cooling, and air circulation in industrial facilities, contributing to a comfortable and safe working environment.
    • Machine Tools: Electric motors drive machine tools such as lathes, milling machines, and grinders, enabling precision machining operations in industrial manufacturing processes.
    • Material Handling Equipment: Electric motors are widely used in material handling equipment such as forklifts, conveyor systems, and hoists, facilitating efficient movement and transportation of goods within industrial facilities.
    • Pumps and Compressors: Electric motors power pumps and compressors in industrial applications, such as water supply systems, HVAC systems, and pneumatic systems.
  3. Adaptability and Customization: Electric motors can be adapted and customized to meet specific requirements in both residential and industrial settings. They are available in a wide range of sizes, power ratings, and configurations to accommodate diverse applications. Motors can be designed for different voltages, frequencies, and environmental conditions, allowing for seamless integration into various systems and equipment. Additionally, advancements in motor control technologies, such as variable frequency drives (VFDs), enable precise speed and torque control, making electric motors highly versatile and adaptable to different operational needs.
  4. Energy Efficiency and Environmental Benefits: The use of electric motors in both residential and industrial settings offers significant energy efficiency advantages. Electric motors have higher efficiency compared to other types of motors, resulting in reduced energy consumption and operational costs. Furthermore, electric motors produce zero direct emissions at the point of use, contributing to a cleaner and more sustainable environment. In residential settings, energy-efficient electric motors in appliances and HVAC systems help homeowners reduce their energy bills and minimize their carbon footprint. In industrial applications, the adoption of electric motors supports energy conservation initiatives and aligns with sustainability goals.

In summary, electric motors are adaptable for use in both residential and industrial settings. Their compact size, energy efficiency, controllability, and versatility make them suitable for a wide range of applications, from home appliances and garage door openers to manufacturing machinery and material handling equipment. The use of electric motors brings benefits such as improved energy efficiency, reduced emissions, quieter operation, and enhanced control, contributing to the efficiency and sustainability of residential and industrial operations.

electric motor

How do electric motors handle variations in voltage and frequency?

Electric motors are designed to handle variations in voltage and frequency to ensure proper operation and performance. The ability of electric motors to adapt to different voltage and frequency conditions depends on their design characteristics and the presence of additional control devices. Here’s a detailed explanation of how electric motors handle variations in voltage and frequency:

  1. Voltage Variations: Electric motors can handle certain variations in voltage without significant issues. The motor’s design factors in a voltage tolerance range to accommodate fluctuations in the power supply. However, excessive voltage variations beyond the motor’s tolerance can affect its performance and lead to problems such as overheating, increased energy consumption, and premature failure. To mitigate the impact of voltage variations, electric motors may incorporate the following features:
    • Voltage Regulation: Some electric motors, especially those used in industrial applications, may include voltage regulation mechanisms. These mechanisms help stabilize the motor’s voltage, compensating for slight voltage fluctuations and maintaining a relatively steady supply.
    • Voltage Protection Devices: Motor control circuits often incorporate protective devices such as voltage surge suppressors and voltage regulators. These devices help prevent voltage spikes and transient voltage variations from reaching the motor, safeguarding it against potential damage.
    • Voltage Monitoring: In certain applications, voltage monitoring systems may be employed to continuously monitor the motor’s supply voltage. If voltage variations exceed acceptable limits, the monitoring system can trigger alarms or take corrective actions, such as shutting down the motor to prevent damage.
  2. Frequency Variations: Electric motors are designed to operate at a specific frequency, typically 50 or 60 Hz, depending on the region. However, variations in the power system frequency can occur due to factors such as grid conditions or the use of frequency converters. Electric motors handle frequency variations in the following ways:
    • Constant Speed Motors: Most standard electric motors are designed for operation at a fixed speed corresponding to the rated frequency. When the frequency deviates from the rated value, the motor’s rotational speed changes proportionally. This can affect the motor’s performance, especially in applications where precise speed control is required.
    • Variable Frequency Drives (VFDs): Variable frequency drives are electronic devices that control the speed of an electric motor by varying the supplied frequency and voltage. VFDs allow electric motors to operate at different speeds and handle frequency variations effectively. By adjusting the frequency and voltage output, VFDs enable precise control of motor speed and torque, making them ideal for applications where speed control and energy efficiency are critical.
    • Inverter Duty Motors: Inverter duty motors are specifically designed to handle the frequency variations encountered when operated with VFDs. These motors feature improved insulation systems and robust designs to withstand the harmonic distortions and voltage spikes associated with VFD operation.
  3. Motor Protection: Electric motors may incorporate protective features to safeguard against adverse effects caused by voltage and frequency variations. These protection mechanisms include:
    • Thermal Protection: Motors often include built-in thermal protection devices such as thermal switches or sensors. These devices monitor the motor’s temperature and can automatically shut it down if it exceeds safe limits due to voltage or frequency variations that lead to excessive heating.
    • Overload Protection: Overload protection devices, such as overload relays, are employed to detect excessive currents drawn by the motor. If voltage or frequency variations cause the motor to draw abnormal currents, the overload protection device can interrupt the power supply to prevent damage.
    • Voltage/Frequency Monitoring: Advanced motor control systems may incorporate voltage and frequency monitoring capabilities. These systems continuously measure and analyze the motor’s supply voltage and frequency, providing real-time feedback on any deviations. If voltage or frequency variations exceed predetermined thresholds, the monitoring system can activate protective actions or trigger alarms for further investigation.

In summary, electric motors handle variations in voltage and frequency through design considerations, additional control devices, and protective mechanisms. Voltage variations are managed through voltage regulation, protective devices, and monitoring systems. Frequency variations can be accommodated by using variable frequency drives (VFDs) or employing inverter duty motors. Motor protection features, such as thermal protection and overload relays, help safeguard the motor against adverse effects caused by voltage and frequency variations. These measures ensure the reliable and efficient operation of electric motors under different voltage and frequency conditions.

electric motor

What are the different types of electric motors available?

There are various types of electric motors available, each designed for specific applications and operating principles. These motors differ in their construction, power sources, and performance characteristics. Here is an overview of some common types of electric motors:

  1. DC Motors: DC (Direct Current) motors are widely used and come in different configurations. The most common types include brushed DC motors and brushless DC motors. Brushed DC motors use brushes and a commutator to switch the direction of current in the rotor, while brushless DC motors use electronic commutation. DC motors offer good speed control and torque characteristics, making them suitable for applications like robotics, electric vehicles, and small appliances.
  2. AC Motors: AC (Alternating Current) motors are classified into several types, including induction motors, synchronous motors, and universal motors. Induction motors are popular for their simplicity and reliability. They operate based on electromagnetic induction and are commonly used in industrial and residential applications. Synchronous motors operate at a constant speed and are often used in applications that require precise control, such as industrial machinery and synchronous clocks. Universal motors are designed to operate on both AC and DC power sources and are commonly found in household appliances like vacuum cleaners and power tools.
  3. Stepper Motors: Stepper motors are designed to move in discrete steps or increments, making them suitable for applications that require precise positioning. They are often used in robotics, 3D printers, CNC machines, and other automated systems. Stepper motors are available in various configurations, including permanent magnet stepper motors, variable reluctance stepper motors, and hybrid stepper motors.
  4. Servo Motors: Servo motors are a type of motor that combines a DC motor with a feedback control mechanism. They are known for their precise control over position, velocity, and acceleration. Servo motors are commonly used in robotics, industrial automation, and applications that require accurate motion control, such as robotic arms, RC vehicles, and camera gimbals.
  5. Linear Motors: Linear motors are designed to produce linear motion instead of rotational motion. They operate on similar principles as rotary motors but with a different mechanical arrangement. Linear motors find applications in high-speed transportation systems, cutting machines, and other systems that require linear motion without the need for mechanical conversion from rotary to linear motion.
  6. Haptic Motors: Haptic motors, also known as vibration motors, are small motors used to create tactile feedback or vibrations in electronic devices. They are commonly found in smartphones, game controllers, wearable devices, and other gadgets that require haptic feedback to enhance the user experience.

These are just a few examples of the different types of electric motors available. Each type has its own advantages, limitations, and specific applications. The selection of an electric motor depends on factors such as the required torque, speed, control, efficiency, and the specific needs of the application at hand.

China best Yej Electromagnetic Brake Motor Three Phase Induction AC Electric Brake Motors   vacuum pump connector	China best Yej Electromagnetic Brake Motor Three Phase Induction AC Electric Brake Motors   vacuum pump connector
editor by CX 2024-04-13

China Best Sales High Torque Integrated Safety Parking Brake Planetary Dual Stage Gearbox Electric Motor Wheel Drive wholesaler

Product Description

PRODUCT DESCRIPTION

High Torque Integrated Safety Parking Brake Planetary Dual Stage Gearbox  Electric Motor Wheel Drive

WEITAI provides mobile drive systems and motion solutions for industries such as Construction, Agriculture, Ports and Shipyards.
 

Our Electric Wheel Drives are designed as an integrated solution including motor and gearbox.

WED Electric Drives

 

· 5.0 KW Permanent magnet synchronous motor
· High efficiency
· Compact design with light weight
· Integrated safety parking brake
· CAN or RS485 controler communication
· Various Motor Power and Gear Ratio options.

PRODUCT PARAMETER

Model

WED-005-105

Motor Power

5.0 KW

Voltage

48 VDC

Rated Output Torque

525 Nm

Peak Torque

2300 Nm

Max. speed

106 r/min

Company Profile
WEITAI is committed to equipping construction machinery with green, energy-saving and high-efficiency electro-hydraulic control systems and all-electric drive systems. From exploring and introducing electro-hydraulic control systems to independently developing all-electric travel devices, CZPT has now successfully made excavators and skid steer loaders electrify their travel and work mechanisms, greatly improving transmission efficiency.

FAQ
1) What types of hydraulic motors does your company produce?
A: CZPT mainly produces complete and fully assembled brand new axial piston motors integrated with planetary gearboxes, which are widely used for track equipment. We can also produce hydraulic motors for wheeled machines.

2) Hydraulic motors of which brands can be replaced with WEITAI’s ones?
A: Our motors are interchangeable with the motors of the following brands: Eaton, Doosan, Jeil, KYB, Nachi, Nabtesco, Rexroth, Poclain, Bonfiglioli, etc.

3) How can I choose the right model of the hydraulic motor to fit my machine?
A: Different markets have different machine variations. The best way to find the right motor is to look at the motor brand and the machine model you have. Another way would be by measuring the key dimensions of the flange frame and the sprocket flange. Please contact our sales team to get technical support if you have difficulties choosing the right motor for your application.

4) Can you produce hydraulic motors based on your customer’s designs and dimensions?
A: Yes, we can. We are ready to provide the best customized hydraulic solutions for your business.

5) Can the OEM parts apply to WEITAI’s travel motors?
A: No, they cannot. Although they might have a similar appearance, their internal structures are different. Only WEITAI’s spare parts can fit WEITAI’s travel motors.

6) What information do we need our customers to provide while choosing the right hydraulic motor for their application?
A: (1) Drawing, or (2) original motor model, or (3) machine model and part No.

7) What languages can WEITAI’s customer support speak?
A: We speak Chinese, English and Russian.

After-sales Service: Online Service
Warranty: 1 Year
Type: Motor
Application: Excavator
Certification: CE
Condition: New
Customization:
Available

|

Customized Request

Motor

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China Best Sales High Torque Integrated Safety Parking Brake Planetary Dual Stage Gearbox Electric Motor Wheel Drive   wholesaler China Best Sales High Torque Integrated Safety Parking Brake Planetary Dual Stage Gearbox Electric Motor Wheel Drive   wholesaler
editor by CX 2023-11-22

China Good quality 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower vacuum pump electric

Product Description

Product Description

Product Name: Nema17 Square Brushless Motor
Number of Phase: 3 Phase
Number of Poles: 4 Poles /8 Poles 
Rated Voltage: 24v /36v /48v /220v
Rated Speed: 3000rpm /4000rpm /or customized
Rated Torque: Customized
Rated Current: Customized
Rated Power: 23w~2500W
baolong has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

Product Parameters

Nema17 Square Brushless Motor Parameters:

Note: We can manufacture products according to customer’s requirements.

 Motor Model 17WSTE483030 17WSTE486030 17WSTE489030
  Number of Phase 3
 Number of Poles 8
Rated Voltage(VDC) 48
Rated Speed(Rpm) 3000
Rated Torque(N.m) 0.1 0.2 0.3
 Rated Power(W) 31 63 94
 Rated Current(A) 0.87 1.74 2.61
 Peak Current(A) 2.6 5.2 7.8
 Peak Torque(N.M) 0.3 0.6 0.9
  Rotor Inertia(kg.cm2) 0.039 0.045 0.052
Torque Constant(N.m/A) 0.115 0.115 0.115
Torque Constant(V/krpm) 12 12 12
Line-Line Resistance(Ω) 1.9 1.4 0.8
 Line-Line Inductance(mH) 1.5 1.1 0.6
Length(mm) 47 67 87
 Weight(kg) 0.4 0.9 1

Outline drawing

Wiring diagram

 

Our Advantages

 

Product display

baolong has a wide range of micro motor production lines in the industry, including Stepper Motor, DC Servo Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Planetary Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

Application

DC brushless motor Application
1,Textile machinery, engraving machine
2,Security, 4g antenna, solar energy
3,Medical equipment, industrial automation
4,Automobile, office automation
5,Printing equipment, advertising equipment etc.

Company Profile

HangZhou CHINAMFG Motor Co., Ltd, established in 2004, is a high-tech enterprise, which is engaged in the development, production and selling kinds of micro motor and motion control systems.
Using high-quality materials, sophisticated manufacturing process and strict quality management our product line includes almost all kinds of high-quality motors, such as hybrid stepper motors, close-loop stepper motors, brushless DC motors, servo motors, etc. Our company is 1 of the leading manufacturers in domestic and international market, and our products are at the same level of international famous-brand ones. Our products are widely used in computer peripheral devices, communications, stage lighting, textiles, packaging, printing, medical equipment, sewing machines, and other industrial automation systems.
Our company is rich in technical experience, we use advanced production process and testing equipment, and obeys advanced quality management requirements in production, such as ISO9001: 2008, 6 Sigma. Besides, our company also has obtained the CE certificate, and all of our products are RoHS compliant.
With the spirit of “product innovation, high quality, excellent service”, our company will continuously focus on micro motor industry, and provide more high-quality products and more professional service for our clients. We try our best to win the client’ S trust by our high-quality products, excellent service and reasonable prices. We are becoming the leader of the micro motor industry.

 

Certifications

 

FAQ

DC brushless motor Payments

1) We can accept EXW, FOB
2) Payment must be made before shipment.
3) Import duties, taxes and charges are not included in the item price or shipping charges. These charges are the buyer’s responsibility.

DC brushless motor Shipping
1) We only ship to your confirmed address. Please make sure your shipping address is correct before purchase.
2) Most orders will be shipped out within 3-7 working days CHINAMFG payment confirmation.
3) Shipping normally takes 7-25 working days. Most of the items will delivery in 2 weeks, while there will be a delay for something we cannot control (such as the bad weather). If it happens, just contact us, we will help you check and resolve any problem.
3) Please  check the package CHINAMFG receipt, if there are some damages, please contact us immediately.

DC brushless motor Feedback & Refund
  1) Feedback is important to us, if you have any problem with our products, please contact us, our technician will give you useful advises.
  2) When you have the parcel and not satisfied with the goods or it is other problem, please tell us immediately, and provide us a photo showing the detail.
  3) Any reason requiring for all refund. Items must be in original condition and no physical damage. Buyer responsible for all shipping cost.

 If you need more information, please contact with us. We will attach great importance to your any problems.
Hope we could establish a long-term effective cooperation. 

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Compound
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

What advancements in electric motor technology have improved energy efficiency?

Advancements in electric motor technology have played a crucial role in improving energy efficiency, leading to more sustainable and environmentally friendly applications. Here’s a detailed explanation of some key advancements in electric motor technology that have contributed to enhanced energy efficiency:

  1. High-Efficiency Motor Designs: One significant advancement in electric motor technology is the development of high-efficiency motor designs. These designs focus on reducing energy losses during motor operation, resulting in improved overall efficiency. High-efficiency motors are engineered with optimized stator and rotor geometries, reduced core losses, and improved magnetic materials. These design enhancements minimize energy wastage and increase the motor’s efficiency, allowing it to convert a higher percentage of electrical input power into useful mechanical output power.
  2. Premium Efficiency Standards: Another notable advancement is the establishment and adoption of premium efficiency standards for electric motors. These standards, such as the International Electrotechnical Commission (IEC) IE3 and NEMA Premium efficiency standards, set minimum efficiency requirements for motors. Manufacturers strive to meet or exceed these standards by incorporating innovative technologies and design features that enhance energy efficiency. The implementation of premium efficiency standards has led to the widespread availability of more efficient motors in the market, encouraging energy-conscious choices and reducing energy consumption in various applications.
  3. Variable Speed Drives: Electric motor systems often operate under varying load conditions, and traditional motor designs operate at a fixed speed. However, the development and adoption of variable speed drives (VSDs) have revolutionized motor efficiency. VSDs, such as frequency converters or inverters, allow the motor’s speed to be adjusted according to the load requirements. By operating motors at the optimal speed for each task, VSDs minimize energy losses and significantly improve energy efficiency. This technology is particularly beneficial in applications with variable loads, such as HVAC systems, pumps, and conveyors.
  4. Improved Motor Control and Control Algorithms: Advanced motor control techniques and algorithms have contributed to improved energy efficiency. These control systems employ sophisticated algorithms to optimize motor performance, including speed control, torque control, and power factor correction. By precisely adjusting motor parameters based on real-time operating conditions, these control systems minimize energy losses and maximize motor efficiency. Additionally, the integration of sensor technology and feedback loops enables closed-loop control, allowing motors to respond dynamically and adaptively to changes in load demand, further enhancing energy efficiency.
  5. Use of Permanent Magnet Motors: Permanent magnet (PM) motors have gained popularity due to their inherent high energy efficiency. PM motors utilize permanent magnets in the rotor, eliminating the need for rotor windings and reducing rotor losses. This design enables PM motors to achieve higher power densities, improved efficiency, and enhanced performance compared to traditional induction motors. The use of PM motors is particularly prevalent in applications where high efficiency and compact size are critical, such as electric vehicles, appliances, and industrial machinery.
  6. Integration of Advanced Materials: Advances in materials science have contributed to improved motor efficiency. The utilization of advanced magnetic materials, such as rare-earth magnets, allows for stronger and more efficient magnetic fields, resulting in higher motor efficiency. Additionally, the development of low-loss electrical steel laminations and improved insulation materials reduces core losses and minimizes energy wastage. These advanced materials enhance the overall efficiency of electric motors, making them more energy-efficient and environmentally friendly.

The advancements in electric motor technology, including high-efficiency motor designs, premium efficiency standards, variable speed drives, improved motor control, permanent magnet motors, and advanced materials, have collectively driven significant improvements in energy efficiency. These advancements have led to more efficient motor systems, reduced energy consumption, and increased sustainability across a wide range of applications, including industrial machinery, transportation, HVAC systems, appliances, and renewable energy systems.

electric motor

How do electric motors handle variations in load, speed, and torque?

Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:

  1. Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
  2. Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
  3. Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
  4. Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.

In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.

China Good quality 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   vacuum pump electricChina Good quality 17 23 34 42 57 86mm Brushless DC BLDC Electric Motor with Gearbox / Brake / Encoder / Controller 12V 24V 36V 48V 220V DC Servo Motor for Lawn Mower   vacuum pump electric
editor by CX 2023-10-20

China Electric Low Price Planetary Gear Reducer Stepper Motor NEMA23 with Driver Brake Encoder Available motorbase

Merchandise Description

 

Product Description

Planetary Equipment Stepping Motor :
Precision high-end upgrade with Nema8, Nema 11, Nema14, Nema 17, Nema23, Nema 24 
stepper motor low noise, low vibration, firm and durable. Increase torque at low speed.
Reduction ratio:1:3.7 , 1:5.2 , 1:14 , 1:19 ,1:27 ,1:51 , 1:71 ,1:100 ,1:139 , 1:189 ,1:264 , 1:369 ,And 48 hours delivery , in stock .

Software:
Automation control, medical equipment, textile machinery,and packaging machinery fields. Not only in the field of the automation industry, it also has a good use status in the home.   Products with low speed and inertia are often seen: electric curtains, electric shutters, etc
 

Merchandise Parameters

Planetary Equipment Box Specification:

Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Engage in of Shaft (in close proximity to to Flange) ≤0.08mm
Axial Engage in of Shaft ≤0.4mm
Backlash at No-load 1 stage≤1°,2stage≤1.2°,3stage≤1.5°

57HS Hybrid Stepping Motor Technical specs:
 

Model No. Step Angle Motor Length(L1) Rated Recent Resistance Inductance Holding Torque # of Prospects Rotor Inertia Mass Max.Gear Ratio
Voltage /Section /Period /Phase
One Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 1.eight fifty five 1.seven two. .eighty five 2.five 950 4 200 .sixty four ≤1:187

57HS5471 Planetary Gearbox Specs:
Reduction ratio 3.6 four.25 thirteen 15 eighteen 23 forty seven 55 65 seventy seven ninety six 121 153 187
Total Top(L1+L2) (mm) 92.8 ninety two.eight 104.4 104.four 104.four 104.four a hundred and fifteen.eight one hundred fifteen.8 a hundred and fifteen.eight one hundred fifteen.8 one hundred fifteen.eight 115.eight 126.nine 126.9
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Complete Fat(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Quantity of equipment trains 1 2 3 4
Reducer Duration(L2)   (mm) 37.8 49.4 60.8 71.9
Efficiency 90% 81% 73% 66%

 

Thorough Photos

Organization Profile

ZheJiang UMot Technological innovation Co., Ltd. specializes in R&D and revenue of stepper motors, servo motors, linear modules and relevant motion management products, customizing and planning substantial-top quality motor products for customers with unique wants close to the entire world, and delivering general answers for motion management techniques. Items are exported to more than thirty nations and locations which includes the United States, Germany, France, Italy, Russia, and Switzerland. The company’s primary merchandise and program style have been broadly used in automation control, precision instruments, health care gear, wise residence, 3D printing and a lot of other fields.
Our firm has been recognized as a substantial-tech enterprise by relevant departments, has a total top quality administration system, has acquired ISO9001, CE, RoHs and other related certifications, and holds a amount of electrical patent certificates. “Focus, Professionalism, Concentration” in the discipline of automation of motor R&D and program management options is the firm’s business objective. “Be your most dependable spouse” is the company’s services philosophy. We have constantly been aiming to “make first-course goods with expert technology”, hold pace with the occasions, innovate constantly, and supply much more consumers with much better items and solutions.

FAQ

one. Shipping and delivery technique:
1)International Convey shipping and delivery DHL&FEDEX &UPS&TNT& 7-10days
two)Delivery by air 7-ten times
three)transport by sea, delivery time is dependent on the vacation spot port.

two. Technical Assistance:
We can offer you with professional specialized assist. And our merchandise top quality promise is 6 months. Also, we acknowledge products personalized.

three. Why must you get from us, not from other suppliers?
Professional a single-to-1 motor personalized. The world’s huge enterprise of selection for large-high quality suppliers. ISO9001:2008 quality management method certification, via the CE, ROHS certification.

four. How to choose models?
Just before purchasing, remember to speak to us to verify design No. and requirements to keep away from any misunderstanding.

5. Are you a manufacturing unit?
Of course, we are a factory, and we generate stepper motor/driver, Servo motor/driver.

 

US $62.5-78.12
/ Piece
|
1 Piece

(Min. Order)

###

Application: Automation Control, Medical Equipment, Textile Mac
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control, Driving
Number of Poles: 2

###

Samples:
US$ 65.0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Play of Shaft (near to Flange) 0.08mm
Axial Play of Shaft ≤0.4mm
Backlash at No-load 1 stage,2stage1.2°,3stage1.5°

###

Model No. Step Angle Motor Length(L1) Rated Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass Max.Gear Ratio
Voltage /Phase /Phase /Phase
Single Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 1.8 55 1.7 2.0 0.85 2.5 950 4 200 0.64 1:187

###

57HS5471 Planetary Gearbox Specifications:
Reduction ratio 3.6 4.25 13 15 18 23 47 55 65 77 96 121 153 187
Total Height(L1+L2) (mm) 92.8 92.8 104.4 104.4 104.4 104.4 115.8 115.8 115.8 115.8 115.8 115.8 126.9 126.9
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Total Weight(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Number of gear trains 1 2 3 4
Reducer Length(L2)   (mm) 37.8 49.4 60.8 71.9
Efficiency 90% 81% 73% 66%
US $62.5-78.12
/ Piece
|
1 Piece

(Min. Order)

###

Application: Automation Control, Medical Equipment, Textile Mac
Speed: Low Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Control, Driving
Number of Poles: 2

###

Samples:
US$ 65.0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(10mm from flange) 300N
Max.Shaft Axial Load 200N
Radial Play of Shaft (near to Flange) 0.08mm
Axial Play of Shaft ≤0.4mm
Backlash at No-load 1 stage,2stage1.2°,3stage1.5°

###

Model No. Step Angle Motor Length(L1) Rated Current Resistance Inductance Holding Torque # of Leads Rotor Inertia Mass Max.Gear Ratio
Voltage /Phase /Phase /Phase
Single Shaft ( °) (L)mm V A Ω mH mN.m No. g.cm2 Kg  
57HS5417 1.8 55 1.7 2.0 0.85 2.5 950 4 200 0.64 1:187

###

57HS5471 Planetary Gearbox Specifications:
Reduction ratio 3.6 4.25 13 15 18 23 47 55 65 77 96 121 153 187
Total Height(L1+L2) (mm) 92.8 92.8 104.4 104.4 104.4 104.4 115.8 115.8 115.8 115.8 115.8 115.8 126.9 126.9
Output torque ( mN.m) 3078 3634 10004 11543 13851 15000 30000 30000 30000 30000 30000 30000 30000 30000
Total Weight(g) 1095 1095 1250 1250 1250 1250 1405 1405 1405 1405 1405 1405 1560 1560
Number of gear trains 1 2 3 4
Reducer Length(L2)   (mm) 37.8 49.4 60.8 71.9
Efficiency 90% 81% 73% 66%

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Motor

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China Electric Low Price Planetary Gear Reducer Stepper Motor NEMA23 with Driver Brake Encoder Available     motorbaseChina Electric Low Price Planetary Gear Reducer Stepper Motor NEMA23 with Driver Brake Encoder Available     motorbase
editor by czh 2023-01-29

China Professional CZPT AC Electric Gear Motor 220V 1.5KW Customize Ratio and Brake Horizontal Installation Induction Gear Motor near me factory

Warranty: 18 months, 1 year
Model Number: GH28-750W-15S
Type: Induction Motor
Frequency: 50Hz / 60Hz
Phase: Three-phase
Protect Feature: IP44/ IP54/ IP55
AC Voltage: 1-phase 110V/220V, 3 phase 220V/380V
Efficiency: Ie 3
Motor ouput speed: 1420 rpm
Ratio: 3-20000
Output Shaft(mm): 18,22,28,32,40,50,60
Material: Aluminum Alloy
Brake: Hand Release/ DC24V Brake
Installation: GH(foot mounted)/GV(flange mounted)
Insulation class: F
Working Environment: -10℃~+40℃, Humidity<90%
Application: Packing Machine/ Face Mask Machine/ Food Machine
Certification: CCC, ce
Packaging Details: carton & pallet

Power100W-7500WOutput Shaft (mm)18 / 22 / 28 / 32 / 40 / 50 / 60Voltage1-phase 110V/220V3-phase 220/380VBrakeHand release / DC24V brakeTypeGH- foot MountedGV-flange mountedApplicationcar-parking system / animal husbandry equipment/ Food Machine/ Packing Machine/ Conveyor WANSHSIN Seikou(ZheJiang ) Co.,Ltd starts producing medium gear motor in 2009, Last year the sales volume for this product is 35 million usd, now is top 3 brand in China. We have more advantages as below:✩ Full Power✩ 100% pure copper coils✩ Specail lubricating oil✩ Low noise✩ Maintanance free✩ Long service life✩ Low temperature rise, working temperature 65℃ (with load) CERTIFICATESWanshsin obtains many certificates such as CE, CCC, ISO, etc, and also have special equipment manufacturing licenses for automated car-parking system gear motors. EXHIBITIONSFrom 2015 to 2019, CZPT attended many world’s famous industrial and automated exhibitions such as Hannover Messe(Germany), Metalloobrabotka(Russia), MTA(Vietnam), Win Eurasia(Turkey), Mecanica(Brazil), Intermach(Tailand), Automex (Malaysia), Automation Expo(India), etc. Now CZPT brand gear motor and gear box are selling to over 40 countries. APPLICATIONSWanshsin Medium Gear Motor is perfect for the machinery and equipment of following industry:Conveyor & Packing machineFood & Beverage machineanimal husbandry gear motorAutomated car-parking system gear motorCoating machine & paper printing machineWood working machineryAutomatic production line & MixerTransport & PackagingConstruction & Metal processingPackaging machineSemi-conduct production equipmentMedical machinePrinting machineRobot armFactory automation equipmentTire building machine Related Products Packing&Shipping Carton & Pallets & Wooden cases (export standards)Generally, we pack our goods in neutral brown cartons or wooden cases. If you have legally registered patent, we can pack the goods in your branded boxes after getting your authorization letters. After Sales Service 1. OEM Manufacturing welcome: Product, Package…2. Sample order3. We will reply you for your inquiry in 24 hours.4. after sending, we will track the products for you once every 2 days, until you get the products. When you got the goods, test them, and give me a feedback.If you have any questions about the problem, contact with us, we will offer the solve way for you. Company Introduction WANSHSIN Seikou(ZheJiang ) Co.,Ltd , established in 2009, is a professional manufacturer engaged in the research, development, sale and service of Planetary Gearbox, Harmonic Reducer, R.F.K.S series, Medium Gear Motor, Micro Gear Motor. We are located in HangZhou, ZheJiang with convenient transportation access, occupying an area of 52,000 sqm. Our company has over 100 sets of High precision machining, CNC machine and test equipment to strictly control the product quality. We have obtained CE, ISO9001, Environmental Management System, Quality Management System certificates. Selling well in all cities and provinces around China, our products are also exported to clients in over 40 countries and regions as USA,Canada, Australia, Netherlands, Poland, Denmark, Russia, Vietnam, Malaysia, Indonesia, Brazil, South Africa, etc . We also welcome OEM and ODM orders. Adhering to the business principle of mutual benefits, we have had a good reputation among our customers because of our perfect services, quality products and competitive prices. We warmly welcome customers from at home and abroad to cooperate with us for common success. FAQ Q: What should I provide when I choose gearbox/speed reducer?A: The best way is to provide the motor drawing with parameter. Our engineer will check and recommend the most suitable gearbox model for your refer. Or you can also provide below specification as well:1) Type, model and torque.2) Ratio or output speed3) Working condition and connection method4) Quality and installed machine name5) Input mode and input speed6) Motor brand model or flange and motor shaft sizeQ: How long does it take to finish my order?A: Normally your order could be delivery in 7-15 days, some hot sales products could be fast delivered in 1 week. The specific delivery time depends on the items and the quantity of your order.Q: Can I get a sample first?A: Sure, we are honored to offer you sample for test before placing a formal order.Q: Where is the port of shipment?A: ZheJiang or HangZhou.Q. What is your terms of delivery?A: EXW, FOB, CFR, CIF, DDU.Q: How does your factory do regarding quality control? A: Quality is priority. We always attach great importance to quality control from the beginning to the end of the production. Every product will be fully assembled and carefully tested before packed. Q: What’s your warranty terms?A:Warranty: 1 year after the shipping date against B/L.Q: How do you make our business long-term and good relationship?A:1. We keep good quality and competitive price to ensure our customers benefit ;2. We respect every customer as our friend and we sincerely do business and make friends with them,no matter where they come from.

The Benefits of Using a Gear Motor

A gear motor works on the principle of conservation of angular momentum. As the smaller gear covers more RPM and the larger gear produces more torque, the ratio between the two is greater than one. Similarly, a multiple gear motor follows the principle of energy conservation, with the direction of rotation always opposite to the one that is adjacent to it. It’s easy to understand the concept behind gear motors and the various types available. Read on to learn about the different types of gears and their applications.

Electric motor

The choice of an electric motor for gear motor is largely dependent on the application. There are various motor and gearhead combinations available, and some are more efficient than others. However, it is critical to understand the application requirements and select a motor that meets these needs. In this article, we’ll examine some of the benefits of using a gear motor. The pros and cons of each type are briefly discussed. You can buy new gear motors at competitive prices, but they aren’t the most reliable or durable option for your application.
To determine which motor is best for your application, you’ll need to consider the load and speed requirements. A gear motor’s efficiency (e) can be calculated by taking the input and output values and calculating their relation. On the graph below, the input (T) and output (P) values are represented as dashed lines. The input (I) value is represented as the torque applied to the motor shaft. The output (P) is the amount of mechanical energy converted. A DC gear motor is 70% efficient at 3.75 lb-in / 2,100 rpm.
In addition to the worm gear motor, you can also choose a compact DC worm gear motor with a variable gear ratio from 7.5 to 80. It has a range of options and can be custom-made for your specific application. The 3-phase AC gear motor, on the other hand, works at a rated power of one hp and torque of 1.143.2 kg-m. The output voltage is typically 220V.
Another important factor is the output shaft orientation. There are two main orientations for gearmotors: in-line and offset. In-line output shafts are most ideal for applications with high torque and short reduction ratios. If you want to avoid backlash, choose a right angle output shaft. An offset shaft can cause the output shaft to become excessively hot. If the output shaft is angled at a certain angle, it may be too large or too small.
Motor

Gear reducer

A gear reducer is a special kind of speed reducing motor, usually used in large machinery, such as compressors. These reducers have no cooling fan and are not designed to handle heavy loads. Different purposes require different service factors. For instance, a machine that requires frequent fast accelerations and occasional load spikes needs a gear reducer with a high service factor. A gear reducer that’s designed for long production shifts should be larger than a machine that uses it for short periods of time.
A gear reducer can reduce the speed of a motor by a factor of two. The reduction ratio changes the rotation speed of the receiving member. This change in speed is often required to solve problems of inertia mismatch. The torque density of a gear reducer is measured in newton meters and will depend on the motor used. The first criterion is the configuration of the input and output shafts. A gear ratio of 2:1, for example, means that the output speed has been cut in half.
Bevel gear reducers are a good option if the input and output shafts are perpendicular. This type is very robust and is perfect for situations where the angle between two axes is small. However, bevel gear reducers are expensive and require constant maintenance. They are usually used in heavy-duty conveyors and farm equipment. The correct choice of gear reducer for gear motor is crucial for the efficiency and reliability of the mechanism. To get the best gear reducer for your application, talk to a qualified manufacturer today.
Choosing a gear reducer for a gear motor can be tricky. The wrong one can ruin an entire machine, so it’s important to know the specifics. You must know the torque and speed requirements and choose a motor with the appropriate ratio. A gear reducer should also be compatible with the motor it’s intended for. In some cases, a smaller motor with a gear reducer will work better than a larger one.
Motor

Motor shaft

Proper alignment of the motor shaft can greatly improve the performance and life span of rotating devices. The proper alignment of motors and driven instruments enhances the transfer of energy from the motor to the instrument. Incorrect alignment leads to additional noise and vibration. It may also lead to premature failure of couplings and bearings. Misalignment also results in increased shaft and coupling temperatures. Hence, proper alignment is critical to improve the efficiency of the driven instrument.
When choosing the correct type of gear train for your motor, you need to consider its energy efficiency and the torque it can handle. A helical geared motor is more efficient for high output torque applications. Depending on the required speed and torque, you can choose between an in-line and a parallel helical geared motor. Both types of gears have their advantages and disadvantages. Spur gears are widespread. They are toothed and run parallel to the motor shaft.
A planetary gear motor can also have a linear output shaft. A stepping motor should not operate at too high current to prevent demagnetization, which will lead to step loss or torque drop. Ensure that the motor and gearbox output shafts are protected from external impacts. If the motor and gearbox are not protected against bumps, they may cause thread defects. Make sure that the motor shafts and rotors are protected from external impacts.
When choosing a metal for your gear motor’s motor shaft, you should consider the cost of hot-rolled bar stock. Its outer layers are more difficult to machine. This type of material contains residual stresses and other problems that make it difficult to machine. For these applications, you should choose a high-strength steel with hard outer layers. This type of steel is cheaper, but it also has size considerations. It’s best to test each material first to determine which one suits your needs.
In addition to reducing the speed of your device, a geared motor also minimizes the torque generated by your machine. It can be used with both AC and DC power. A high-quality gear motor is vital for stirring mechanisms and conveyor belts. However, you should choose a geared motor that uses high-grade gears and provides maximum efficiency. There are many types of planetary gear motors and gears on the market, and it’s important to choose the right one.
Motor

First stage gears

The first stage gears of a gear motor are the most important components of the entire device. The motor’s power transmission is 90% efficient, but there are many factors that can affect its performance. The gear ratios used should be high enough to handle the load, but not too high that they are limiting the motor’s speed. A gear motor should also have a healthy safety factor, and the lubricant must be sufficient to overcome any of these factors.
The transmission torque of the gear changes with its speed. The transmission torque at the input side of the gear decreases, transferring a small torque to the output side. The number of teeth and the pitch circle diameters can be used to calculate the torque. The first stage gears of gear motors can be categorized as spur gears, helical gears, or worm gears. These three types of gears have different torque capacities.
The first stage helical gear is the most important part of a gear motor. Its function is to transfer rotation from one gear to the other. Its output is the gearhead. The second stage gears are connected by a carrier. They work in tandem with the first stage gear to provide the output of the gearhead. Moreover, the first stage carrier rotates in the same direction as the input pinion.
Another important component is the output torque of the gearmotor. When choosing a gearmotor, consider the starting torque, running torque, output speed, overhung and shock loads, duty cycles, and more. It is crucial to choose a gearmotor with the right ratio for the application. By choosing the proper gearmotor, you will get maximum performance with minimal operating costs and increase plant productivity. For more information on first stage gears, check out our blog.
The first stage of a gear motor is composed of a set of fixed and rotating sprockets. The first stage of these gears acts as a drive gear. Its rotational mass is a limiting factor for torque. The second stage consists of a rotating shaft. This shaft rotates in the direction of the torque axis. It is also the limiting force for the motor’s torque.

China Professional CZPT AC Electric Gear Motor 220V 1.5KW Customize Ratio and Brake Horizontal Installation Induction Gear Motor  near me factory China Professional CZPT AC Electric Gear Motor 220V 1.5KW Customize Ratio and Brake Horizontal Installation Induction Gear Motor  near me factory

China Custom high quality 72v disc brake 2 kw electric motorcycle motor near me manufacturer

Model Number: YM-HY-157100
Voltage(V): 72V
Output Power: 2000W
Usage: Electric Motorcycle
Type: Brushless DC Motor
Torque: 50-200N.m
Construction: Permanent Magnet
Commutation: Brushless
Protect Feature: Waterproof
Speed(RPM): 550-840
Continuous Current(A): 10A-83A
Efficiency: ≥90%
Certification: CCC
Motor Type: Brushless Direct Current Motor(BLDC Motor)
Axle Configuration: Double
Color: Black/white etc.
OEM: Accepted
Custom Order: Accepted
Rated Speed: 39-63km/h
Magnet Height: 45mm
Number Of Motor Phases: 3
Waterproof Grade: IP67
MOQ: 1 Piece/Pieces
Packaging Details: Standarding packing with carton boxes.
Port: ZheJiang

Wholesale Drive Powerful 10Inch 2000W Dc Brushless Electric Motorcycle Motor

Main Products
Products Display

Yuma Motor Specification:

Motor Type
Brushless Direct Current Motor(BLDC Motor)

Axle Configuration
Double

Wheel Rim
10 inch

Rated Speed
39-63km/h

Voltage
72V

Magnet Height
45mm

RPM
550-840

Brake System
Disc Brake

Hall Sensors
1/2

Hall Sensor Phasing
120°

Number of motor phases
3

Max Efficiency
93%

Rated Out Power
2000w

Number of Pole Pairs
24

Cross Section of Phase Wire
6 square

Waterproof Grade
IP54

Color
Black/white etc.

Package
Carton

Notice:
Yuma Motor could work 120 ℃ in half an hour without damage.
Suggestion (Setting of Controller)
When it’s 130 ℃ inside of motor (in 30s), the current should be limited 50%.
When it’s 150 ℃, the controller shut down. When it drop down to 110℃, the controller work again.

More Yuma Motor Informaiton:
Optional Appearance
Motor Details, drawing, performance curve (refer to attachment in PDF).
For more information, please feel free to contact with us.
Hot Products
Production Process
Our Company
HangZhou Yuma Power Technology Co., Ltd.is a professioal manufacturer of brushless DC motors, high-power brushless DC motors, brushless DC motor controller, integrating development and production together. our company has clean production environment, advanced production equipment and perfect team. Products are widely used in: electric bicycles, electric motorcycles, electric cars, electric truck and so on. Our products, quality, service are recognized by the industry. Welcome friends come to visit, guidance and business negotiation.
Certificates
Packaging & Shipping
Contact Us

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China Custom high quality 72v disc brake 2 kw electric motorcycle motor  near me manufacturer China Custom high quality 72v disc brake 2 kw electric motorcycle motor  near me manufacturer

China wholesaler 60W CZPT Electric Induction Brushed Brushless Electric Brake DC Gear Reduction Motor Boiler Motor with Good quality

Merchandise Description

60W CZPT Electric Induction Brushed Brushless Electrical Brake DC Equipment Reduction Motor Boiler Motor

Characteristics

one) Proportions: sixty*60mm, 70*60mm, eighty*80mm, 90*80mm, 90*90mm, 104*90mm
2) Energy: 15W 20W 30W 60W 80W 100W 120W 180W 200W 400W
three) Voltage: 12V 24V 48V 90V 310V
4) Rated speed: 2000rpm, 3000rpm
five) Reduction ratio: 3~ 200K

 

Merchandise Photos

 

 

Item Description

 

Motor type Brush type / Brushless variety / Stepper sort
Body measurement 16mm ~ 130mm… can be tailored
Operating pace Motor 1500-4000 rpm, Equipment Ratio 1/3 ~ 1/3000
Output power 3W ~2200W… can be personalized
Output shaft round shaft, D-lower shaft, crucial-way shaft, hollow shaft…
Voltage type 12V / 24V / 36V / 48V / 90V / 110V /220V… can be custom-made
Accessories Internal driver / Exterior driver / Connector / Brake / Encoder…
 
Gearbox sort Parallel shaft
Proper angle hollow worm shaft Proper angle bevel hollow shaft Flat kind hollow shaft
Proper angle sound worm shaft Appropriate angle bevel sound shaft Flat kind solid shaft
Planetary middle shaft

 

Advantages

 

 

FAQ

 

Q: Can you make the gear motor with customization?
A: Sure, we can customise for each your ask for, like power, voltage, velocity, shaft dimensions, wires, connectors, IP grade, and so on.

Q: Do you provide samples?
A: Indeed. The sample is obtainable for tests.

Q: What is your MOQ?
A: It is 10pcs for the commencing of our organization.

Q: What’s your lead time?
A: Common goods need 5-30days, a bit for a longer time for custom-made items.

Q: Do you give specialized support?
A: Sure. Our organization have design and development staff, we can supply complex assistance if you
need.

Q: How to ship to us?
A: It is accessible by air, or by sea, or by train.

Q: How to shell out the money?
A: T/T and L/C are preferred, with a distinct currency, such as USD, EUR, RMB, etc.

Q: How can I know the item is suitable for me?
A: >1ST affirm drawing and specification >2nd examination sample >3rd begin mass creation.

Q: Can I come to your organization to pay a visit to?
A: Sure, you are welcome to go to us at any time.

Q: How shall we make contact with you?
A: You can send an inquiry directly, and we will react within 24 several hours.
 

Two sorts of AC motors incorporate: Synchronous: The reality that a synchronous motor rotates at the identical fee as the frequency of the mains present offers the motor its identify. A synchronous motor consists of a stator and a rotor. Synchronous motors have a broad range of programs. Induction: Induction motors are the most straightforward and strongest motors accessible. These AC motors consist of two electrical elements: a wound stator and rotor assembly. The existing required to flip the rotor is created by the electromagnetic induction designed by the stator windings. Induction motors are one of the most generally utilized kinds of motors in the globe.
Two varieties of AC motors contain: Synchronous: The reality that a synchronous motor rotates at the same rate as the frequency of the mains current offers the motor its name. A synchronous motor is made up of a stator and a rotor. Synchronous motors have a vast range of programs. Induction: Induction motors are the simplest and strongest motors available. These AC motors consist of two electrical factors: a wound stator and rotor assembly. The existing needed to turn the rotor is generated by the electromagnetic induction produced by the stator windings. Induction motors are one particular of the most typically utilised varieties of motors in the world.

China wholesaler 60W CZPT Electric Induction Brushed Brushless Electric Brake DC Gear Reduction Motor Boiler Motor     with Good quality

China wholesaler High Quality Electric Wheelchair Motor Pm Brushed Gear with Emb Brake with high quality

Merchandise Description

24V200W, 70RPM, 30nm Massive Torque    
Wheelchair Motor with Single Axis/EMB Brake/Hand lever

Most use in Electric Motor vehicle/ Wheelchair and So on.

  • Singleoutput Axis ,electromagnetic brake and guide clutch brake.
  • Wheelchair Hub Motor
  • Tiny Sounds.
  • Very good performance for commutation potential
  • Modest volume and higher effectiveness

Specs:

Item varieties:  Brush DC HUB motor
 Model:  6DY-A8
 Rated power:  200W
 Rated voltage:  24V
 Rated speed  70RPM
 Custom made:  Yes
Rated torque:   30NM
  Corrent   Less than 17A
 Output axis  Single

 Design and style Choices:

  1. Working voltages to fit
  2. Custom shaft(Axis)sizes/profiles
  3. Tailored performance profiles
  4. Particular OEM configurations
  5. Equipment ratio alternatives

Competitive Advantage:

  1. Use skinny plate-variety printed armature winding
  2. High energy and put on-resistant equipment shifting program.
  3. Constructed-in brake with electromagnetic clutch,and support manual clutch.
  4. Bigger beginning torque, wide speed selection.
  5. Minimal speed working and good functionality for commutation ability
  6. Little quantity and high performance

AC motors are also various from DC motors because most AC motors do not consist of brushes. This signifies that servicing and components substitution needs for AC motors are likely to be drastically lowered, with most consumers usually expecting a more time regular lifespan. Unlike DC motors, the output velocity of a lot of types of AC motors is frequently established by inverter manage – again, we are going to briefly define a variety of prospective versions on the basic AC motor product.
Synchronous motors operate at a speed that is synchronous with the frequency of the mains recent. This signifies that in the steady-point out of the motor, the rotation of the shaft is synchronized with the frequency of the source current. The interval of rotation of the shaft is equal to the quantity of AC cycles. The stator of a synchronous motor has polyphase AC electromagnets. These electromagnets make a magnetic field that rotates in synchrony with the current in the wire. The rotor geared up with permanent magnets or electromagnets rotates synchronously with the stator magnetic discipline to type the next synchronous rotating magnetic area of the AC motor.

China wholesaler High Quality Electric Wheelchair Motor Pm Brushed Gear with Emb Brake     with high quality

China factory 2 Phase NEMA23 57mm 2.2n. M 4.2A Electric Brushless Step Stepper Stepping Motor Kit with Brake for 3D Printer with Free Design Custom

Product Description

two section nema23 57mm 2.2N.m 4.2A electrical brushless step stepper stepping motor package with brake for 3D printer

Item Description

Performance parameter

Model

Shaft extension

Holding   Torque

Positioning

 Torque

Existing /stage

Resistance

/period

Inductance

/section

Rotor inertia

Motor
W

Motor

L

ZL57HS09-one thousand

platform

.5x15mm

one.0N.m

45mN.m

4.2A

.41Ω

one.3mH

245g.cm²

1.1kg

80mm

ZL57HS22-one thousand

system

.5x15mm

two.2N.m

78mN.m

4.2A

.60Ω

2.2mH

470g.cm²

1.4kg

106mm

ZL57HS22-1000

platform

.5x15mm

two.8N.m

130mN.m

four.2A

.70Ω

two.5mH

810g.cm²

one.6kg

125mm

ZL57HS22-E1-28

system

.5x15mm

2.8N.m

130mN.m

four.2A

.70Ω

2.5mH

810g.cm²

one.6kg

125mm

ZL57HS22-one thousand-B

platform

.5x15mm

2.8N.m

130mN.m

4.2A

.70Ω

2.5mH

810g.cm²

one.6kg

125mm

Feature:     

  • Large output torque, higher speed and no stage reduction
  • Minimal warmth, reduced noise, reduced vibration and high precision and lengthy lifespan.
  • Combine stepper motor and driver in 1 motor.

Stepper Motor substance decomposition

Dimensions (device: mm)

Motor wiring


Attention
:
one. When installing the motor, be certain to use the front stop cover of the motor to set up the quit placement, and shell out attention to the cooperation, strictly guarantee the concentricity of the motor shaft and the load.
2. When the motor is linked to the driver, do not hook up the wrong phase.

Assembling approach

All varieties of 2 phase built-in open loop stepper motors for choice

Packaging & Delivery

Motor excess weight: 1400g
Driver weigth: .2kg
Motor length: 106mm
Package: carton with foam, amount for each carton will count on the motor size.
Shipping: merchandise will be deliveried by air(EMS, DHL, FedEx,TNT and so on), by prepare or by boat in accordance to your specifications.

Company Data

 1. Transient introduction:

    HangZhou CZPT Engineering Co., Ltd. is a CZPT business specialized in R&D, generation and revenue of industrial automation transmission items The firm gathered a big amount of R&D elites being engaged in movement handle field for much more than 10 years and constantly give expense-efficient motion manage goods for our partners.

2. Solution ranges:

Robotic Hub Servo Motor, Electronic Stepper Driver, Closed Loop Stepper Driver, Lower-voltage DC Servo Driver and Stepper Motor, Multi-axis Movement Controller and so forth.

three. Our service philosophy:  Develop value for consumers.

four. Core worth: Focused, revolutionary, virtuous, and pragmatic

5. Our vision: Currently being the most skilled manufacturer in the area of automation control, serving the world-wide market

About CZPT goods on Exhibition:

Get in touch with:

Tel: -571-29799302 Cel: -13510984905

FAQ:

 1. Manufacturing unit or trader?
We are manufacturing facility, and have skilled R&D staff as released in business information.

two. How about the shipping?
– Sample: 3-5 days.
– Bulk buy: 15-30 times.

three. What is your right after-income providers?
1. Cost-free upkeep within twelve months assure, life span advisor.
2. Specialist options in installation and maintence.

4. Why pick us?
one. Manufacturing facility Price & 24/7 right after-sale solutions.
2. From mildew customization to materials processing and welding, from wonderful elements to completed assembly, seventy two procedures, 24 handle details, rigid aging, finished product inspection.

5. Do you get the pertinent certification?
All merchandise are made in accordance to ISO9001, CE demands.

An AC motor is a common sort of electrical motor that is driven by alternating recent. As the most effective useful motors for everyday industrial programs (as properly as hobbyist initiatives, home products, and all other professional gear and client merchandise), AC motors provide a relatively effective method of making mechanical power from a basic electrical enter sign.
These NEMA c-plane reducers are gear toughness, maintenance-free, and can be put in in any orientation with a slip suit “O” ring design and style. Accessible in low to high reduction ratios, flange mount or base mount styles, appropriate angle or hollow shaft appropriate angle variations. Set up NEMA C-Encounter AC motors, brushless DC motors, and brushed DC motors. For 1/2 HP to 3 HP Motors NEMA 56C, 140TC, and 180TC Enter Flange Inline Helical Equipment Reducers Proper Angle Hypoid Gear Reducers

China factory 2 Phase NEMA23 57mm 2.2n. M 4.2A Electric powered Brushless Phase Stepper Stepping Motor Kit with Brake for 3D Printer     with Cost-free Layout Custom made