Tag Archives: asynchronous electric motor

China best 220V 380V 100% Copper Wire Winding Ms My Ml 2-6pole 0.25kw-400kw Aluminum Shell Three Phase AC Induction Asynchronous Electrical Electric Motor vacuum pump ac system

Product Description

 

PRODUCT OVERVIEW

  YS/MSseries aluminum housing three-phase asynchronrous motors, with latest design in entirety,are made of selected quality materials and conform to the lEC standard.
  MS motors have good performance, safety and reliable operation, nice appearance,and can be maintained very conveniently,while with low noise, little vibration and at the same time light weight and simple construction.
These motors can be used for general drive.

CONDITIONS OF USE
Ambient temperature:-15ºC-40ºC
Altitude: Not exceeding 1000m
Rated voltage: 380V
Rated frequency: 50Hz/60Hz
Protection class: IP54,IP55
Insulation Class: Class B/F
Cooling method: ICO141 Duty:S1(continuous)

Product Parameters

Packaging & Shipping

 

1) Packing Details
Packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.Or according to client’s requirement.

2) Shipping Details
Samples will be shipped within 10 days.
Batch order leading time according to the actual situation.

Company Profile

 

   ZHangZhoug CHINAMFG Motor Co., Ltd,located in Zeguo Town,HangZhou,HangZhou City,China,enjoys convenient land, sea and air transportation network.
  We are specialized in all kinds of small and middle-sized electric motors.our main products include electric motors of Y series,Y2/YE2 series,YS/MS series of Three Phase Asynchronous motor;YC series,YL series,MY/ML series,JY series of Single Phase motors etc.They are widely used in machine tool, fans, pumps, compressors, packaging machinery, mining machinery, construction machinery, food machinery and other mechanical transmission device.
  We have obtained ISO90001-2008 quality certificate, CE certificate and CCC certificate.Our products are widely exported to over 50 countries and regions,such as east Europe,Southeast Asia,South America,Middle East,Africa etc.Meanwhile,we have kept well touch with many trading companies at home and abroad for cooperation relationship.
  “Reliable quality, Excellent service, Reasonable price, Timely delivery” is our company persistent pursuit.Looking CHINAMFG to be your long term business partner.

Detailed Photos

FAQ

Q:Why choose us?
A:professional electric motor manufacturer for 10 years;
   good quality material and advanced test machine

Q:What is your MOQ?
A:10 pcs is ok for each model.At first time,trial order is okay.

Q:What about your warranty?
A: 1 year,except man-made destroyed.

Q:how about your payment way ?
A: 30% T/T in advance,70% balance on sight of BL copy by T/T or irrevocable L/C.

Q:Can you make OEM/ODM order?
A:Yes,we have rich experience on OEM/ODM order. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

Are there any emerging trends in electric motor technology, such as smart features?

Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:

  1. Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
  2. Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
  3. Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
  4. Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
  5. Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
  6. Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.

The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China best 220V 380V 100% Copper Wire Winding Ms My Ml 2-6pole 0.25kw-400kw Aluminum Shell Three Phase AC Induction Asynchronous Electrical Electric Motor   vacuum pump ac system	China best 220V 380V 100% Copper Wire Winding Ms My Ml 2-6pole 0.25kw-400kw Aluminum Shell Three Phase AC Induction Asynchronous Electrical Electric Motor   vacuum pump ac system
editor by CX 2024-04-11

China high quality CHINAMFG Yb3 Explosion Proof AC Induction Asynchronous Three Phase Motor vacuum pump electric

Product Description

> Product Introduction
Gphq YBX3 Flameproof three-phase as ynchronous motor
YBX3 ranges of three-phase induction motors are explosion proof motor obtained by renewal and generation-changing of YB ranges of explosion proof motor .
1.The performances of the products have come up to advanced international standards.
2.The motors have the advantages of higher efficiency, energy saving, higher locked-rotor torque, lower noise, smaller vibration, safe and reliable operation and beautiful appearance, etc.
3.The outputs, mounting dimensions and their corresponding relationships comply with IEC standards.

YBX3 series electric  explosion proof motor are designed and manufactured into explosion proof type motor and the explosion proof property conforms to China National Standards: GB3836.1-2000 Electrical Apparatus for Explosive Gas Atmospheres-General Requirements.
GB3836.2-2000 Electrical Apparatus for Explosive Gas Atmospheres- Explosion proof Enclosure d and standards IEC79-1, BS4683 and EN50018.
ExdI- safe for use in the non-mining surfaces of underground coal mines where the explosive mixtures of methane or coal-dust are present.
ExdIIAT4 – safe for use in plants where the explosive mixtures of IIA Class, TI, T2, T3 or T4 are present.
ExdIIBT4 – safe for use in plants where the explosive mixtures of IIB Class, TI, T2, T3 or T4 are present.
ExdIICT4 – safe for use in plants where the explosive mixtures of IIC Class, TI, T2, T3 or T4 are present.

FAQ
1, Q:what’s your MOQ for ac synchronous motor ?
A: 5pc is ok for each type electric motor 

2, Q: What about your warranty for your 3 phase  motor?
A: 1 year ,but except man-made destroyed

3, Q: which payment way you can accept ?
A: TT, western union .

4, Q: how about your payment way ?
A: 100%payment in advanced less $5000 ,30% payment in advanced payment , 70% payment before sending over $5000.

5, Q: how about your packing of  induction motor ?
A: carton or plywood case ,if less 1 container , we can pack all goods with pallet for small size motor

6, Q: What information should be given, if I buy electric ac motor from you ?
A: rated power, speed or pole ,type ,voltage , mounting way , quantity , if more is better , 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4
Customization:
Available

|

electric motor

How do manufacturers ensure the quality and reliability of electric motors?

Manufacturers employ several measures and quality control processes to ensure the quality and reliability of electric motors. These measures span from design and manufacturing stages to testing and inspections. Here’s a detailed explanation of how manufacturers ensure the quality and reliability of electric motors:

  1. Robust Design and Engineering: Manufacturers invest significant effort in designing electric motors with robust engineering principles. This involves careful selection of materials, precise calculations, and simulation techniques to ensure optimal performance and durability. Thorough design reviews and analysis are conducted to identify potential issues and optimize the motor’s design for reliability.
  2. Stringent Manufacturing Processes: Manufacturers adhere to stringent manufacturing processes to maintain consistent quality standards. This includes using advanced manufacturing technologies, automated assembly lines, and precision machining to ensure accurate and reliable motor production. Strict quality control measures are implemented at each stage of manufacturing, including material inspection, component testing, and assembly verification.
  3. Quality Control and Testing: Comprehensive quality control and testing procedures are implemented to assess the performance and reliability of electric motors. This includes electrical testing to verify motor characteristics such as voltage, current, power consumption, and efficiency. Mechanical testing is conducted to assess factors like torque, vibration, and noise levels. Additionally, endurance tests are performed to evaluate the motor’s performance over extended operating periods.
  4. Certifications and Compliance: Electric motor manufacturers often obtain certifications and comply with industry standards to ensure quality and reliability. These certifications, such as ISO 9001, IEC standards, and UL certifications, demonstrate that the manufacturer follows recognized quality management systems and meets specific requirements for product safety, performance, and reliability. Compliance with these standards provides assurance to customers regarding the motor’s quality.
  5. Reliability Testing: Manufacturers conduct extensive reliability testing to assess the motor’s performance under various conditions and stress factors. This may include accelerated life testing, temperature and humidity testing, thermal cycling, and load testing. Reliability testing helps identify potential weaknesses, evaluate the motor’s robustness, and ensure it can withstand real-world operating conditions without compromising performance or reliability.
  6. Continuous Improvement and Feedback: Manufacturers emphasize continuous improvement by gathering feedback from customers, field testing, and warranty analysis. By monitoring the performance of motors in real-world applications, manufacturers can identify any issues or failure patterns and make necessary design or process improvements. Customer feedback also plays a crucial role in driving improvements and addressing specific requirements.
  7. Quality Assurance and Documentation: Manufacturers maintain comprehensive documentation throughout the production process to ensure traceability and quality assurance. This includes recording and tracking raw materials, components, manufacturing parameters, inspections, and testing results. Proper documentation allows manufacturers to identify any deviations, track the motor’s history, and enable effective quality control and post-production analysis.
  8. Supplier Evaluation and Control: Manufacturers carefully evaluate and select reliable suppliers for motor components and materials. Supplier quality control processes are established to ensure that the sourced components meet the required specifications and quality standards. Regular supplier audits, inspections, and quality assessments are conducted to maintain a consistent supply chain and ensure the overall quality and reliability of the motors.

By implementing these measures, manufacturers ensure the quality and reliability of electric motors. Through robust design, stringent manufacturing processes, comprehensive testing, compliance with standards, continuous improvement, and effective quality control, manufacturers strive to deliver electric motors that meet or exceed customer expectations for performance, durability, and reliability.

electric motor

Can electric motors be used in renewable energy systems like wind turbines?

Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:

Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:

  1. Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
  2. Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
  3. Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
  4. Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
  5. Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.

Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.

Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China high quality CHINAMFG Yb3 Explosion Proof AC Induction Asynchronous Three Phase Motor   vacuum pump electricChina high quality CHINAMFG Yb3 Explosion Proof AC Induction Asynchronous Three Phase Motor   vacuum pump electric
editor by CX 2024-04-11

China manufacturer Three Phase Explosion Proof Flameproof AC Electrical Asynchronous Induction Ex Electric Motor wholesaler

Product Description

Product Description

 

Explosion-proof motor is 1 of the important electrical products in the petroleum, chemical and coal industries. Our explosion proof motor has high operational safety, excellent performance, low noise and vibration and meets the need of environment protection. 

For the explosion proof high efficiency electric motor, we have YBX3, YBX4, YBX5 series, from 0.18KW to 315KW. For different voltage, frequency and different power, we can do the customized
 

Product Parameters

Application

The Conditions of Using of Electric/Electrical Induction Three Phase Ex-proof AC Motor :

1. The altitude does not exceed 1000 meters. Higher altitudes support customization.
2. The highest ambient air temperature, no more than 40 ° C. Higher temperature support customization.
3. The power frequency of ex-proof AC motor is 50Hz(60Hz) ± 1%.
4.The variation range of working voltage shall not be greater than ± 5% of rated voltage.
5.The ex-proof electric AC motor rating is continuous duty S1.
6.Explosion-proof grade ExdIIBT4Gb, suitable for electric drive in underground coal mine (non-mining working face)and factories containing explosive gas mixture in line with the above standard in the workplace.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

How does an electric motor ensure efficient energy conversion?

An electric motor ensures efficient energy conversion by employing various design features and principles that minimize energy losses and maximize the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors achieve efficient energy conversion:

  1. Efficient Motor Design: Electric motors are designed with careful consideration given to their construction and materials. High-quality magnetic materials, such as laminated iron cores and permanent magnets, are used to reduce magnetic losses and maximize magnetic field strength. Additionally, the motor’s windings are designed with low-resistance conductors to minimize electrical losses. By optimizing the motor’s design, manufacturers can improve its overall efficiency.
  2. Reducing Friction and Mechanical Losses: Electric motors are designed to minimize friction and mechanical losses. This is achieved through the use of high-quality bearings and lubrication systems that reduce friction between moving parts. By reducing friction, the motor can operate more efficiently, translating more of the input energy into useful mechanical work rather than dissipating it as heat.
  3. Efficient Control and Power Electronics: Electric motors employ advanced control techniques and power electronics to enhance energy conversion efficiency. Variable frequency drives (VFDs) are commonly used to control motor speed and torque, allowing the motor to operate at optimal efficiency levels under varying load conditions. Power electronics devices, such as insulated gate bipolar transistors (IGBTs) and MOSFETs, minimize switching losses and optimize power flow within the motor.
  4. Regenerative Braking and Energy Recovery: Some electric motors, particularly those used in hybrid electric vehicles (HEVs) and electric trains, incorporate regenerative braking systems. These systems convert the kinetic energy of the moving vehicle back into electrical energy, which can be stored and reused. By capturing and reusing energy that would otherwise be wasted as heat during braking, regenerative braking significantly improves overall energy efficiency.
  5. Efficient Cooling and Thermal Management: Electric motors generate heat during operation, and excessive heat can lead to energy losses and reduced efficiency. To mitigate this, motors are designed with efficient cooling systems such as fans, heat sinks, or liquid cooling methods. Proper thermal management ensures that the motor operates within the optimal temperature range, reducing losses and improving overall efficiency.
  6. High-Efficiency Standards and Regulations: Governments and organizations have established energy efficiency standards and regulations for electric motors. These standards encourage manufacturers to produce motors with higher efficiency ratings. Compliance with these standards ensures that motors meet certain efficiency criteria, resulting in improved energy conversion and reduced energy consumption.

By incorporating these design features, control techniques, and efficiency measures, electric motors achieve efficient energy conversion. They minimize energy losses due to factors such as resistance, friction, and heat dissipation, ensuring that a significant portion of the input electrical energy is converted into useful mechanical work. The continuous advancements in motor design, materials, and control technologies further contribute to improving the overall energy efficiency of electric motors.

electric motor

Are there any emerging trends in electric motor technology, such as smart features?

Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:

  1. Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
  2. Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
  3. Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
  4. Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
  5. Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
  6. Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.

The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.

electric motor

How do electric motors handle variations in load, speed, and torque?

Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:

  1. Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
  2. Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
  3. Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
  4. Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.

In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.

China manufacturer Three Phase Explosion Proof Flameproof AC Electrical Asynchronous Induction Ex Electric Motor   wholesaler China manufacturer Three Phase Explosion Proof Flameproof AC Electrical Asynchronous Induction Ex Electric Motor   wholesaler
editor by CX 2024-04-09

China factory Ybbp Flameproof Three-Phase Asynchronous DC Motor with Variable Frequency Speed Regulation Induction Electric Motor vacuum pump brakes

Product Description

Ybbp Flameproof Three-Phase Asynchronous DC Motor with Variable Frequency Speed Regulation Induction electric motor 

Product Description

 

Detailed Photos

 

 

 

Product Parameters

 

 

PERFORMANCE DATA
Type Nominal horse-power (KW)   nominal current(A) Rate torque(N.m) Permanent torque(Hz) Constant-power speed range(Hz) LRT BDT LRA Vibration(mm/s) Noise dB(A)
HP RLT RLT RLA
 Synchronous Speed 3000r/min(2P)
YBBP-80M1-2 0.75 1 1.8 2.4 5-50 50-100 2.2 2.3 6.5  1.3 70
YBBP-80M2-2 1.1 1.5 2.6  3.5
YBBP-90S-2 1.5 2 3.4 4.8 8.0  74
YBBP-90L-2 2.2 3 4.8 7
YBBP-100L-2 3 4 6.2 9.5 78
YBBP-112M-2 4 5.5 8.1 12.7 82
YBBP-132S1-2 5.5 7.5 11.1 17.5 85
YBBP-132S2-2 7.5 10 14.9 23.9
YBBP-160M1-2 11 15 21.5 35.0  2.4 1.8 87
YBBP-160M2-2 15 20 28.6 47.7
YBBP-160L-2 18.5 25 35.1 58.9
YBBP-180M-2 22 30 41.0  70 2 2.3 90
YBBP-200L1-2 30 40 55.4 95.5 92
YBBP-200L2-2 37 50 67.9 117.8
YBBP-225M-2 45 60 82.1 143.2 94
YBBP-250M-2 55 75 99.8 175.1 50-60 96
YBBP-280S-2 75 100 133.8 236 98
YBBP-280M-2 90 125 160 284
YBBP-315S-2 110 150 195.4 350 1.8 2.2 2.3 100
YBBP-315M-2 132 180 233.2 420
YBBP-315L1-2 160 220 282.4 509
YBBP-315L2-2 200 270 352 637
YBBP-355M1-2 220 300 388 700 1.6 103
YBBP-355M2-2 250 340 439 796
YBBP-355L1-2 280 380 491 891
YBBP-355L2-2 315 430 551 1003

PERFORMANCE DATA
Type Nominal horse-power (KW)   nominal current(A) Rate torque(N.m) Permanent torque(Hz) Constant-power speed range(Hz) LRT BDT LRA Vibration(mm/s) Noise dB(A)
HP RLT RLT RLA
 Synchronous Speed 1500r/min(4P)
YBBP-80M1-4 0.55 0.75 1.5 3.5 5-50 50-100 2.4 2.3 5.5  1.3 62
YBBP-80M2-4 0.75 1 2.0  4.8
YBBP-90S-4 1.1 1.5 2.9 7 2.3 6.5  64
YBBP-90L-4 1.5 2 3.7 9.5
YBBP-100L1-4 2.2 3 5.1  14 2.4 68
YBBP-100L2-4 3 4 6.7 19.1
YBBP-112M-4 4 5.5 8.8 25.5 72
YBBP-132S-4 5.5 7.5 11.6 35 7.5  76
YBBP-132M-4 7.5 10 15.4 47.7
YBBP-160M-4 11 15 22.2 70.0  2.2 1.8 79
YBBP-160L-4 15 20 30 96
YBBP-180M-4 18.5 25 36.5  117.8 2.3 83
YBBP-180L-4 22 30 43.1  140.1
YBBP-200L-4 30 40 57.6 191 2.4 85
YBBP-225S-4 37 50 69.9 236 88
YBBP-225M-4 45 60 84.7 286.5
YBBP-250M-4 55 75 103 350.1 92
YBBP-280S-4 75 100 140 478 94
YBBP-280M-4 90 125 167 573
YBBP-315S-4 110 150 201 700 2.1 2.2 2.3 96
YBBP-315M-4 132 180 240.4 840
YBBP-315L1-4 160 220 288 1019
YBBP-315L2-4 200 270 360 1273
YBBP-355M1-4 220 300 396 1401 50-60 98
YBBP-355M2-4 250 340 443 1592
YBBP-355L1-4 280 380 497 1783
YBBP-355L2-4 315 430 559 2005

 

PERFORMANCE DATA
Type Nominal horse-power (KW)   nominal current(A) Rate torque(N.m) Permanent torque(Hz) Constant-power speed range(Hz) LRT BDT LRA Vibration(mm/s) Noise dB(A)
HP RLT RLT RLA
  Synchronous Speed 1000r/min(6P)
YBBP-80M1-6 0.37 0.5 1.3 3.5 5-50 50-100 2.1 2.1 4.5  1.3 61
YBBP-80M2-6 0.55 0.75 1.8  5.3
YBBP-90S-6 0.75 1 2.3 7.2 63
YBBP-90L-6 1.1 1.5 3.1 10.5 5.5 
YBBP-100L-6 1.5 2 3.9 14.3 66
YBBP-112M-6 2.2 3 5.6 21.0  71
YBBP-132S-6 3 4 7.3 28.6 2.4 6.5  75
YBBP-132M1-6 4 5.5 9.4 38.2
YBBP-132M2-6 5.5 7.5 12.6 52.5 7.0 
YBBP-160M-6 7.5 10 16.8 71.6  1.8 78
YBBP-160L-6 11 15 24.2 105
YBBP-180L-6 15 20 31.6  143 2.1 7.5  82
YBBP-200L1-6 18.5 25 37.6 176.7 2.4 84
YBBP-200L2-6 22 30 44.7 210.1
YBBP-225M-6 30 40 57.6 286.4 86
YBBP-250M-6 37 50 71.1 353.3 90
YBBP-280S-6 45 60 85.9 425 92
YBBP-280M-6 55 75 104.7 520 2.2
YBBP-315S-6 75 100 141.7 716 2.0  2.0  2.3 94
YBBP-315M-6 90 125 169.5 859
YBBP-315L1-6 110 150 206.7 1050
YBBP-315L2-6 132 180 244.7 1260
YBBP-355S-6 160 220 293 1528 1.9 96
YBBP-355M1-6 185 250 365 1910
YBBP-355M2-6 200 270 365 1910
YBBP-355L1-6 220 300 402 2101
YBBP-355L2-6 250 340 457 2387

 

PERFORMANCE DATA
Type Nominal horse-power (KW)   nominal current(A) Rate torque(N.m) Permanent torque(Hz) Constant-power speed range(Hz) LRT BDT LRA Vibration(mm/s) Noise dB(A)
HP RLT RLT RLA
 Synchronous Speed 750r/min(8P)
YBBP-80M1-8 0.18 0.25 0.86 2.3 5-50 50-100 1.8 2.1 4.5  1.3 61
YBBP-80M2-8 0.25 0.35 1.1  3.2
YBBP-90S-8 0.37 0.5 1.4 4.7 63
YBBP-90L-8 0.55 0.75 2.1 7
YBBP-100L1-8 0.75 1 2.4 9.5 66
YBBP-100L2-8 1.1 1.5 3.3 14
YBBP-112M-8 1.5 2 4.4 19.1  71
YBBP-132S-8 2.2 3 5.8 28 2.2 5.5  75
YBBP-132M-8 3 4 7.7 38.2
YBBP-160M1-8 4 5.5 10.3 50.9  1.9 6.5  1.8 78
YBBP-160M2-8 5.5 7.5 13.4 70.0 
YBBP-160L-8 7.5 10 17.6 95.5
YBBP-180L-8 11 15 25.3  140 82
YBBP-200L-8 15 20 33.7 191 7.2  84
YBBP-225S-8 18.5 25 40.0  236 86
YBBP-225M-8 22 30 47.4 280
YBBP-250M-8 30 40 63.4 382 2.0  90
YBBP-280S-8 37 50 77.8 471 1.8 92
YBBP-280M-8 45 60 94.1 573
YBBP-315S-8 55 75 111.2 700 2.3 94
YBBP-315M-8 75 100 150.5 955
YBBP-315L1-8 90 125 180 1146
YBBP-315L2-8 110 150 216.8 1401
YBBP-355S-8 132 180 260 1681 96
YBBP-355M-8 160 220 315 2037
YBBP-355L1-8 185 250 364 2355
YBBP-355L2-8 200 270 392 2546 1.2

 

PERFORMANCE DATA
Type Nominal horse-power (KW)   nominal current(A) Rate torque(N.m) Permanent torque(Hz) Constant-power speed range(Hz) LRT BDT LRA Vibratin(mm/s) Noise dB(A)
HP RLT RLT RLA
  Synchronous Speed 600r/min(10P)
YBBP-160M-10 4 5.5 11.8  63.7  5~50Hz 50~100Hz 1.1 1.9 6.3  2.2 70
YBBP-160L-10 5.5 7.5 15.8  87.5  1.1 1.9
YBBP-180L-10 7.5 10 21.0  119.4  1.1 1.9
YBBP-200L-10 11 15 29.4  175.1  1.1 1.9 73
YBBP-225S-10 15 20 38.7  238.8  1.1 1.9
YBBP-225M-10 18.5 25 45.2  294.5  1.1 1.9
YBBP-250M-10 22 30 51.9  350.2  1.1 1.9 76
YBBP-280S-10 30 40 69.2  477.5  1.1 1.9
YBBP-280M-10 37 50 82.6  588.9  1.1 1.9
YBBP-315S-10 45 60 99.6  716.3  1.2 2 6.5  2.8 82
YBBP-315M-10 55 75 121  875.4  1.2 2
YBBP-315L1-10 75 100 162  1193.8  1.2 2
YBBP-315L2-10 90 125 191  1432.5  1.2 2
YBBP-355S1-10 90 125 191  1432.5  1.2 2
YBBP-355M1-10 110 150 230  1750.8  1.2 2 7.0  90
YBBP-355M2-10 132 180 275  2101.0  1.2 2
YBBP-355L1-10 160 220 333  2546.7  1.2 2
YBBP-355L2-10 185 250 385  2944.6  1.2 2

 

PERFORMANCE DATA
Type Nominal horse-power (KW)   nominal current(A) Rate torque(N.m) Permanent torque(Hz) Constant-power speed range(Hz) LRT BDT LRA Vibraton(mm/s) Noise dB(A)
HP RLT R LT RLA
   Synchronous Speed 500r/min(12P)
YBBP-160M-12 3 4 9.7  57.3  5~50Hz 50~100Hz 1.1 1.7 6.0  3.2  70
YBBP-160L-12 4 5.5 12.6  76.4  1.1 1.7
YBBP-180L-12 5.5 7.5 16.9  105.1  1.1 1.7
YBBP-200L-12 7.5 10 22.1  143.3  1.1 1.7 72
YBBP-225S-12 11 15 29.6  210.1  1.1 1.7
YBBP-225M-12 15 20 40.0  286.5  1.1 1.7
YBBP-250M-12 18.5 25 48.1  353.4  1.1 1.7 75
YBBP-280S-12 22 30 55.9  420.2  1.1 1.7
YBBP-280M-12 30 40 74.5  573.0  1.1 1.7
YBBP-315S-12 37 50 88.7  706.7  1.1 1.7 3.8  82
YBBP-315M-12 45 60 107  859.5  1.2 1.6 6.1 
YBBP-315L1-12 55 75 129  1050.5  1.2 1.6
YBBP-315L2-12 75 100 172  1432.5  1.2 1.6
YBBP-355M1-12 90 125 205  1719.0  1.2 1.6 93
YBBP-355M2-12 110 150 247  2101.0  1.2 1.6
YBBP-355L1-12 132 180 295  2521.2  1.2 1.6
YBBP-355L2-12 160 220 357  3056.0  1.2 1.6

 

Installation Instructions

 

 

 

Certifications

 

 

 

FAQ

Q: Are you trading company or manufacturer?
A: We are manufacturer.

Q: What is the payment terms?
A: 30% T/T in advance, 70% before shipment or L/C at sight. 

Q: What is your delivery time?
A: standard product 20 days after receiving your L/C or T/T deposit.

Q: What is the MOQ of this item?
A: 1 units for small/medium size motors, unlimited for large ones.

Q: How long is your warranty?
A: 12 months after receiving B/L.

Q: Can we used our own brand on motors ?
A: Yes, OEM and ODM also to be provided. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

How do electric motors handle variations in voltage and frequency?

Electric motors are designed to handle variations in voltage and frequency to ensure proper operation and performance. The ability of electric motors to adapt to different voltage and frequency conditions depends on their design characteristics and the presence of additional control devices. Here’s a detailed explanation of how electric motors handle variations in voltage and frequency:

  1. Voltage Variations: Electric motors can handle certain variations in voltage without significant issues. The motor’s design factors in a voltage tolerance range to accommodate fluctuations in the power supply. However, excessive voltage variations beyond the motor’s tolerance can affect its performance and lead to problems such as overheating, increased energy consumption, and premature failure. To mitigate the impact of voltage variations, electric motors may incorporate the following features:
    • Voltage Regulation: Some electric motors, especially those used in industrial applications, may include voltage regulation mechanisms. These mechanisms help stabilize the motor’s voltage, compensating for slight voltage fluctuations and maintaining a relatively steady supply.
    • Voltage Protection Devices: Motor control circuits often incorporate protective devices such as voltage surge suppressors and voltage regulators. These devices help prevent voltage spikes and transient voltage variations from reaching the motor, safeguarding it against potential damage.
    • Voltage Monitoring: In certain applications, voltage monitoring systems may be employed to continuously monitor the motor’s supply voltage. If voltage variations exceed acceptable limits, the monitoring system can trigger alarms or take corrective actions, such as shutting down the motor to prevent damage.
  2. Frequency Variations: Electric motors are designed to operate at a specific frequency, typically 50 or 60 Hz, depending on the region. However, variations in the power system frequency can occur due to factors such as grid conditions or the use of frequency converters. Electric motors handle frequency variations in the following ways:
    • Constant Speed Motors: Most standard electric motors are designed for operation at a fixed speed corresponding to the rated frequency. When the frequency deviates from the rated value, the motor’s rotational speed changes proportionally. This can affect the motor’s performance, especially in applications where precise speed control is required.
    • Variable Frequency Drives (VFDs): Variable frequency drives are electronic devices that control the speed of an electric motor by varying the supplied frequency and voltage. VFDs allow electric motors to operate at different speeds and handle frequency variations effectively. By adjusting the frequency and voltage output, VFDs enable precise control of motor speed and torque, making them ideal for applications where speed control and energy efficiency are critical.
    • Inverter Duty Motors: Inverter duty motors are specifically designed to handle the frequency variations encountered when operated with VFDs. These motors feature improved insulation systems and robust designs to withstand the harmonic distortions and voltage spikes associated with VFD operation.
  3. Motor Protection: Electric motors may incorporate protective features to safeguard against adverse effects caused by voltage and frequency variations. These protection mechanisms include:
    • Thermal Protection: Motors often include built-in thermal protection devices such as thermal switches or sensors. These devices monitor the motor’s temperature and can automatically shut it down if it exceeds safe limits due to voltage or frequency variations that lead to excessive heating.
    • Overload Protection: Overload protection devices, such as overload relays, are employed to detect excessive currents drawn by the motor. If voltage or frequency variations cause the motor to draw abnormal currents, the overload protection device can interrupt the power supply to prevent damage.
    • Voltage/Frequency Monitoring: Advanced motor control systems may incorporate voltage and frequency monitoring capabilities. These systems continuously measure and analyze the motor’s supply voltage and frequency, providing real-time feedback on any deviations. If voltage or frequency variations exceed predetermined thresholds, the monitoring system can activate protective actions or trigger alarms for further investigation.

In summary, electric motors handle variations in voltage and frequency through design considerations, additional control devices, and protective mechanisms. Voltage variations are managed through voltage regulation, protective devices, and monitoring systems. Frequency variations can be accommodated by using variable frequency drives (VFDs) or employing inverter duty motors. Motor protection features, such as thermal protection and overload relays, help safeguard the motor against adverse effects caused by voltage and frequency variations. These measures ensure the reliable and efficient operation of electric motors under different voltage and frequency conditions.

electric motor

How do electric motors handle variations in load, speed, and torque?

Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:

  1. Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
  2. Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
  3. Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
  4. Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.

In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.

China factory Ybbp Flameproof Three-Phase Asynchronous DC Motor with Variable Frequency Speed Regulation Induction Electric Motor   vacuum pump brakesChina factory Ybbp Flameproof Three-Phase Asynchronous DC Motor with Variable Frequency Speed Regulation Induction Electric Motor   vacuum pump brakes
editor by CX 2024-04-09

China supplier Hm Series Asynchronous Electric Motor vacuum pump and compressor

Product Description

1HM IE1 premium efficiency Motor / Asynchronous  motor 
1HMI-IE1 (EFF2) Series Cast Iron Housing Three Phase Asynchronous Motor is the basic series of general-purpose motor with low voltage upgraded of Y series motor. HMI-IE1 (EFF2) Series Motors with beautiful appearance and reliable operation meet to the needs of general-purpose at domestic and overseas within the range of frame size 71 to 355.
HMI-IE1(EFF2) Series Motors are designed of high efficiency, energy saving, high quality performance, small vibration, low noise, long life, high reliability, easy maintenance and large start torque, etc. The mounting dimension and power totally conform to IEC standard.      

1HMI-IE1 (EFF2) Series Cast Iron Housing Motor Characteristics and advantages:

Efficiency Class:IE1 
Frame Size: H71-355 Poles: 2, 4, 6, 8, 10poles
Rated Power: 0.09-315KW 
Rated Voltage: 220/380V, 380/660V, 230/400V, 400V/690V 
Frequency: 50HZ, 60HZ 
Protection Class: IP44, IP54, IP55, IP56 
Insulation Class: B, F, H Mounting Type:B3, B5, B35multi and pad mounting 
Ambient Temperature: -20~+40 °C 
Altitude: ≤1000M
 

DATASHEET
TYPE Rated Output  Rated Speed Efficiency Power Factor Rated current(A) Ts/Tn Tmax/Tn Is/In ALU C/I  
(kW) (rpm) (%) Cosφ 380V 400V 415V       (Kg) (Kg) dB(A)
HM1 56M1-2 0.09 2750 50 0.7 0.39 0.37 0.4 2.1 2.2 5.2 3.6 / 58
HM1 56M2-2 0.12 2750 53.6 0.72 0.47 0.45 0.4 2.1 2.2 5.2 3.9 58
HM1 63M1-2 0.18 2730 58.3 0.8 0.59 0.56 0.5 2.2 2.2 5.5 4.8 61
HM1 63M2-2 0.25 2800 61.9 0.81 0.76 0.72 0.7 2.2 2.2 5.5 5.1 61
HM1 71M1-2 0.37 2756 65.8 0.81 1.05 1.00 1.0 2.2 2.2 6.1 6 64
HM1 71M2-2 0.55 2792 69.4 0.82 1.47 1.40 1.3 2.2 2.2 6.1 6.5 64
HM1 80M1-2 0.75 2830 72.1 0.83 1.9 1.8 1.7 2.2 2.3 6.1 8.7 15 67
HM1 80M2-2 1.1 2830 75 0.84 2.7 2.5 2.4 2.2 2.3 7 9.5 16.5 67
HM1 90S-2 1.5 2840 77.2 0.84 3.5 3.3 3.2 2.2 2.3 7 11.8 20 72
HM1 90L-2 2.2 2840 79.7 0.85 4.9 4.7 4.5 2.2 2.3 7 13.5 24 72
HM1 100L-2 3 2860 81.5 0.87 6.4 6.1 5.9 2.2 2.3 7.5 21 31 76
HM1 112M-2 4 2880 83.1 0.88 8.3 7.9 7.6 2.2 2.3 7.5 28 38 77
HM1 132S1-2 5.5 2900 84.7 0.88 11.2 10.7 10.3 2.2 2.3 7.5 39 58 80
HM1 132S2-2 7.5 2900 86 0.88 15.1 14.3 13.8 2.2 2.3 7.5 44.5 62 80
HM1 160M1-2 11 2930 87.6 0.89 21.4 20.4 19.6 2.2 2.3 7.5 69.5 103 86
HM1 160M2-2 15 2930 88.7 0.89 28.9 27.4 26.4 2.2 2.3 7.5 78 112 86
HM1 160L-2 18.5 2930 89.3 0.90 35.0 33.2 32.0 2.2 2.3 7.5 88.5 135 86
HM1 180M-2 22 2940 89.9 0.90 41.3 39.2 37.8 2 2.3 7.5 / 165 89
HM1 200L1-2 30 2950 90.7 0.90 55.8 53.0 51.1 2 2.3 7.5 215 92
HM1 200L2-2 37 2950 91.2 0.90 68.5 65.1 62.7 2 2.3 7.5 232 92
HM1 225M-2 45 2970 91.7 0.90 82.8 78.7 75.9 2 2.3 7.5 285 92
HM1 250M-2 55 2970 92.1 0.90 100.8 95.8 92.3 2 2.3 7.5 375 93
HM1 280S-2 75 2970 92.7 0.90 136.6 129.8 125.1 2 2.3 7.5 500 94
HM1 280M-2 90 2970 93 0.91 161.6 153.5 148.0 2 2.3 7.5 550 94
HM1 315S-2 110 2980 93.3 0.91 196.9 187.0 180.2 1.8 2.2 7.1 860 96
HM1 315M-2 132 2980 93.5 0.91 235.7 223.9 215.8 1.8 2.2 7.1 960 96
HM1 315L1-2 160 2980 93.8 0.92 281.7 267.6 257.9 1.8 2.2 7.1 1571 99
HM1 315L2-2 200 2980 94 0.92 351.4 333.8 321.7 1.8 2.2 7.1 1080 99
HM1 355M-2 250 2980 94.3 0.92 437.8 415.9 400.9 1.6 2.2 7.1 1700 103
HM1 355L-2 315 2980 94.5 0.92 550.5 523.0 504.1 1.6 2.2 7.1 1850 103
HM1 400M1-2 355 2985 95.7 0.90 626.2 594.9 573.4 1.6 2 7.5 2750 106
HM1 400M2-2 400 2985 96 0.90 703.4 668.2 644.1 1.7 2 7.5 2880 106
HM1 400M3-2 450 2985 96.1 0.90 790.5 751.0 723.9 1.5 2 7.5 3000 109
HM1 400L-2 500 2985 96.2 0.91 867.8 824.4 794.6 1.5 2 7.5 3160 109
HM1 56M1-4 0.06 1325 44.5 0.58 0.35 0.34 0.32 2 2.1 3.9 3.6 / 48
HM1 56M2-4 0.09 1325 50.0 0.61 0.45 0.43 0.41 2 2.1 3.9 3.9 48
HM1 63M1-4 0.12 1320 53.6 0.72 0.47 0.45 0.43 2.1 2.2 4.4 4.8 52
HM1 63M2-4 0.18 1320 58.3 0.73 0.64 0.61 0.59 2.1 2.2 4.4 5.1 52
HM1 71M1-4 0.25 1347 61.9 0.74 0.83 0.79 0.76 2.1 2.2 5.2 6 55
HM1 71M2-4 0.37 1340 65.8 0.75 1.14 1.08 1.04 2.1 2.2 5.2 6.3 55
HM1 80M1-4 0.55 1390 69.4 0.75 1.61 1.53 1.47 2.4 2.3 5.2 9.4 14.5 58
HM1 80M2-4 0.75 1390 72.1 0.76 2.1 2.0 1.9 2.3 2.3 6 10 15 58
HM1 90S-4 1.1 1390 75 0.77 2.9 2.7 2.6 2.3 2.3 6 12 19 61
HM1 90L-4 1.5 1390 77.2 0.79 3.7 3.6 3.4 2.3 2.3 6 14 23 61
HM1 100L1-4 2.2 1410 79.7 0.81 5.2 4.9 4.7 2.3 2.3 7 21 30 64
HM1 100L2-4 3 1410 81.5 0.82 6.8 6.5 6.2 2.3 2.3 7 23.5 33 64
HM1 112M-4 4 1435 83.1 0.82 8.9 8.5 8.2 2.3 2.3 7 29.5 43 65
HM1 132S-4 5.5 1440 84.7 0.83 11.9 11.3 10.9 2.3 2.3 7 41 60 71
HM1 132M-4 7.5 1440 86 0.84 15.8 15.0 14.4 2.3 2.3 7 47.5 69 71
HM1 160M-4 11 1460 87.6 0.84 22.7 21.6 20.8 2.2 2.3 7 72.5 107 75
HM1 160L-4 15 1460 88.7 0.85 30.2 28.7 27.7 2.2 2.3 7.5 85.5 130 75
HM1 180M-4 18.5 1470 89.3 0.86 36.6 34.8 33.5 2.2 2.3 7.5 / 162 76
HM1 180L-4 22 1470 89.9 0.86 43.2 41.1 39.6 2.2 2.3 7.5 175 76
HM1 200L-4 30 1470 90.7 0.86 58.4 55.5 53.5 2.2 2.3 7.2 227 79
HM1 225S-4 37 1480 91.2 0.87 70.9 67.3 64.9 2.2 2.3 7.2 282 81
HM1 225M-4 45 1480 91.7 0.87 85.7 81.4 78.5 2.2 2.3 7.2 315 81
HM1 250M-4 55 1480 92.1 0.87 104.3 99.1 95.5 2.2 2.3 7.2 390 83
HM1 280S-4 75 1480 92.7 0.87 141.3 134.2 129.4 2.2 2.3 7.2 525 86
HM1 280M-4 90 1480 93 0.87 169.0 160.6 154.8 2.2 2.3 7.2 590 86
HM1 315S-4 110 1490 93.3 0.88 203.6 193.4 186.4 2.1 2.2 6.9 900 93
HM1 315M-4 132 1490 93.5 0.88 243.8 231.6 223.2 2.1 2.2 6.9 1000 93
HM1 315L1-4 160 1490 93.8 0.89 291.2 276.6 266.6 2.1 2.2 6.9 1070 97
HM1 315L2-4 200 1490 94 0.89 363.2 345.1 332.6 2.1 2.2 6.9 1140 97
HM1 355M-4 250 1490 94.3 0.90 447.6 425.2 409.8 2.1 2.2 6.9 1760 101
HM1 355L-4 315 1490 94.5 0.90 562.7 534.6 515.3 2.1 2.2 6.9 1920 101
HM1 400M1-4 355 1490 95.8 0.89 632.6 601.0 579.3 1.6 2 6.5 2900 104
HM1 400M2-4 400 1490 95.9 0.89 712.1 676.5 652.0 1.3 2 6.5 3000 104
HM1 400M3-4 450 1490 96 0.90 791.3 751.8 724.6 1.5 2 6.5 3150 107
HM1 400L1-4 500 1490 96.1 0.88 898.3 853.4 822.6 1.7 2 7 3310 107
HM1 400L2-4 560 1490 96.1 0.88 1006.1 955.8 921.3 1.8 2 7 3460 107
HM1 71M1-6 0.18 865 57.3 0.66 0.72 0.69 0.66 1.9 2 4 6 / 52
HM1 71M2-6 0.25 863 60.5 0.68 0.92 0.88 0.85 1.9 2 4 6.3 52
HM1 80M1-6 0.37 890 64.1 0.70 1.25 1.19 1.15 1.9 2 4.7 8.9 17.0 54
HM1 80M2-6 0.55 890 67.5 0.72 1.72 1.63 1.57 1.9 2 4.7 10.4 19.0 54
HM1 90S-6 0.75 910 70 0.72 2.26 2.15 2.07 2 2.1 5.5 12.1 20 57
HM1 90L-6 1.1 910 72.9 0.73 3.14 2.98 2.88 2 2.1 5.5 13.7 24 57
HM1 100L-6 1.5 920 75.2 0.75 4.04 3.84 3.70 2 2.1 5.5 23 29 61
HM1 112M-6 2.2 935 77.7 0.76 5.66 5.38 5.18 2 2.1 6.5 28.2 37 65
HM1 132S-6 3 960 79.7 0.76 7.53 7.15 6.89 2.1 2.1 6.5 40.3 53 69
HM1 132M1-6 4 960 81.4 0.76 9.82 9.33 9.00 2.1 2.1 6.5 43 64 69
HM1 132M2-6 5.5 960 83.1 0.77 13.06 12.41 11.96 2.1 2.1 6.5 47.2 72 69
HM1 160M-6 7.5 970 84.7 0.77 17.47 16.60 16.00 2 2.1 6.5 70.6 97 73
HM1 160L-6 11 970 86.4 0.78 24.80 23.56 22.71 2 2.1 6.5 85 126 73
HM1 180L-6 15 970 87.7 0.81 32.08 30.48 29.38 2 2.1 7 / 166 73
HM1 200L1-6 18.5 970 88.6 0.81 39.17 37.21 35.86 2.1 2.1 7 205 76
HM1 200L2-6 22 970 89.2 0.83 45.15 42.89 41.34 2.1 2.1 7 220 76
HM1 225M-6 30 980 90.2 0.84 60.16 57.15 55.09 2 2.1 7 290 76
HM1 250M-6 37 980 90.8 0.86 71.99 68.39 65.92 2.1 2.1 7 370 78
HM1 280S-6 45 980 91.4 0.86 86.98 82.63 79.65 2.1 2 7 490 80
HM1 280M-6 55 980 91.9 0.86 105.73 100.45 96.82 2.1 2 7 540 80
HM1 315S-6 75 990 92.6 0.86 143.09 135.94 131.03 2 2 7 850 85
HM1 315M-6 90 990 92.9 0.86 171.16 162.60 156.72 2 2 7 960 85
HM1 315L1-6 110 990 93.3 0.86 208.30 197.88 190.73 2 2 6.7 1060 85
HM1 315L2-6 132 990 93.5 0.87 246.55 234.23 225.76 2 2 6.7 1120 85
HM1 355M1-6 160 990 93.8 0.88 294.51 279.79 269.67 1.9 2 6.7 1680 92
HM1 355M3-6 200 990 94 0.88 367.36 348.99 336.37 1.9 2 6.7 1780 92
HM1 355L2-6 250 990 94.2 0.88 458.22 435.31 419.58 1.9 2 6.7 1950 92
HM1 400M1-6 315 990 95.2 0.87 577.86 548.97 529.13 1.4 2 6.5 3410 96
HM1 400M2-6 355 990 95.4 0.87 649.87 617.38 595.07 1.2 2 6.5 3650 96
HM1 400L1-6 400 990 95.6 0.88 722.42 686.30 661.49 1.5 2 6.5 3700 100
HM1 400L2-6 450 990 95.8 0.88 811.02 770.47 742.62 1.2 2 6.5 3820 100
HM1 400L3-6 500 990 95.9 0.88 900.20 855.19 824.28 1.6 2 6.5 3970 100
HM1 80M1-8 0.18 630 51.0 0.61 0.88 0.84 0.80 1.8 1.9 3.3 9 15.5 52
HM1 80M2-8 0.25 640 54.0 0.61 1.15 1.10 1.06 1.8 1.9 3.3 10.5 16.5 52
HM1 90S-8 0.37 660 62.0 0.61 1.49 1.41 1.36 1.8 1.9 4 12 20 56
HM1 90L-8 0.55 660 63.0 0.61 2.17 2.07 1.99 1.8 2 4 13.5 24 56
HM1 100L1-8 0.75 690 71.0 0.67 2.40 2.28 2.19 1.8 2 4 23 30 59
HM1 100L2-8 1.1 690 73.0 0.69 3.32 3.15 3.04 1.8 2 5 25 32 59
HM1 112M-8 1.5 680 75.0 0.69 4.40 4.18 4.03 1.8 2 5 28 40 61
HM1 132S-8 2.2 710 78.0 0.71 6.04 5.73 5.53 1.8 2 6 40 52 64
HM1 132M-8 3 710 79.0 0.73 7.90 7.51 7.24 1.8 2 6 45 63 64
HM1 160M1-8 4 720 81.0 0.73 10.28 9.76 9.41 1.9 2 6 68 90 68
HM1 160M2-8 5.5 720 83.0 0.74 13.61 12.93 12.46 2 2 6 76 100 68
HM1 160L-8 7.5 720 85.5 0.75 17.77 16.88 16.27 2 2 6 86 124 68
HM1 180L-8 11 730 87.5 0.76 25.13 23.88 23.01 2 2 6.6 / 160 70
HM1 200L-8 15 730 88.0 0.76 34.08 32.37 31.20 2 2 6.6 212 73
HM1 225S-8 18.5 730 90.0 0.76 41.09 39.04 37.63 1.9 2 6.6 255 73
HM1 225M-8 22 740 90.5 0.78 47.35 44.99 43.36 1.9 2 6.6 285 73
HM1 250M-8 30 740 91.0 0.79 63.40 60.23 58.06 1.9 2 6.6 370 75
HM1 280S-8 37 740 91.5 0.79 77.77 73.88 71.21 1.9 2 6.6 485 76
HM1 280M-8 45 740 92.0 0.79 94.07 89.37 86.14 1.9 2 6.6 540 76
HM1 315S-8 55 740 92.8 0.81 111.17 105.61 101.80 1.8 2 6.6 820 82
HM1 315M-8 75 740 93.0 0.81 151.27 143.71 138.52 1.8 2 6.6 970 82
HM1 315L1-8 90 740 93.8 0.82 177.78 168.90 162.79 1.8 2 6.6 1050 82
HM1 315L2-8 110 740 94.0 0.82 216.83 205.99 198.54 1.8 2 6.4 1130 82
HM1 355M1-8 132 740 93.7 0.82 261.03 247.98 239.01 1.8 2 6.4 1720 90
HM1 355M2-8 160 740 94.2 0.82 314.72 298.98 288.18 1.8 2 6.4 1800 90
HM1 355L-8 200 740 94.5 0.83 387.43 368.05 354.75 1.8 2 6.4 1950 90
HM1 400M1-8 250 745 95.2 0.82 486.58 462.25 445.55 1.4 2 6.5 2900 95
HM1 400M2-8 280 745 95.2 0.82 544.97 517.73 499.01 1.3 2 6.5 3000 95
HM1 400L1-8 315 745 95.4 0.85 590.22 560.71 540.44 1.3 2 6.5 3100 98
HM1 400L2-8 355 745 95.7 0.85 663.08 629.93 607.16 1.2 2 6.5 3250 98
HM1 400L3-8 400 745 95.3 0.85 750.27 712.76 686.99 1.1 2 6.5 3400 98
HM1 315S-10 45 590 91.5 0.75 99.63 94.65 91.23 1.5 2 6.2 830 82
HM1 315M-10 55 590 92.0 0.75 121.11 115.06 110.90 1.5 2 6.2 940 82
HM1 315L1-10 75 590 92.5 0.76 162.10 153.99 148.43 1.5 2 6.2 1070 82
HM1 315L2-10 90 590 93.0 0.77 190.96 181.41 174.85 1.5 2 6.2 1150 82
HM1 355M1-10 110 590 93.2 0.78 229.91 218.41 210.52 1.3 2 6 1660 90
HM1 355M2-10 132 590 93.5 0.78 275.00 261.25 251.81 1.3 2 6 1780 90
HM1 355L-10 160 590 93.5 0.78 333.34 316.67 305.22 1.3 2 6 1950 90
HM1 400M1-10 180 595 95.1 0.79 364.03 345.83 333.33 1.2 2 6 2900 93
HM1 400M2-10 200 595 95.3 0.80 398.58 378.65 364.96 1.2 2 6 3000 93
HM1 400L1-10 250 595 95.5 0.81 491.04 466.49 449.63 1.1 2 6 3150 97
HM1 400L2-10 280 595 95.7 0.81 548.82 521.38 502.53 1.2 2 6 3380 97
HM1 400L3-10 315 595 95.9 0.81 616.13 585.33 564.17 1.2 2 6 3580 97

 

 

 
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Control
Casing Protection: Closed Type
Number of Poles: 2 / 4 / 6
Customization:
Available

|

electric motor

Can you provide examples of machinery or equipment that rely on electric motors?

Electric motors are extensively used in various machinery and equipment across different industries. They play a crucial role in converting electrical energy into mechanical energy to power a wide range of applications. Here are some examples of machinery and equipment that heavily rely on electric motors:

  • Industrial Machinery: Electric motors are found in numerous industrial machinery and equipment, such as pumps, compressors, fans, conveyors, agitators, mixers, and machine tools. These motors provide the necessary power for moving fluids, gases, and materials, as well as driving mechanical processes in manufacturing, mining, construction, and other industrial applications.
  • Electric Vehicles: Electric motors are the primary propulsion system in electric vehicles (EVs) and hybrid electric vehicles (HEVs). They provide the power needed to drive the wheels and propel the vehicle. Electric motors in EVs and HEVs offer high efficiency, instant torque, and regenerative braking capabilities, contributing to the advancement of sustainable transportation.
  • Household Appliances: Many household appliances rely on electric motors for their operation. Examples include refrigerators, air conditioners, washing machines, dishwashers, vacuum cleaners, blenders, and electric fans. Electric motors enable the movement, cooling, or mechanical functions in these appliances, enhancing convenience and efficiency in daily household tasks.
  • HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for various functions. Motors power the fans in air handling units, circulate air through ducts, and drive compressors in air conditioning and refrigeration systems. Electric motors in HVAC systems contribute to efficient temperature control and air circulation in residential, commercial, and industrial buildings.
  • Medical Equipment: Electric motors are essential components in a wide array of medical equipment. Examples include MRI machines, X-ray machines, CT scanners, surgical robots, dental drills, infusion pumps, and patient lifts. These motors enable precise movements, imaging capabilities, and mechanical functions in medical devices, supporting diagnostics, treatment, and patient care.
  • Power Tools: Electric motors are commonly used in power tools such as drills, saws, grinders, sanders, and routers. They provide the rotational force and power required for cutting, shaping, drilling, and other tasks. Electric motors in power tools offer portability, ease of use, and consistent performance for both professional and DIY applications.
  • Aircraft Systems: Electric motors are increasingly utilized in aircraft systems. They power various components, including landing gear actuation systems, fuel pumps, hydraulic systems, and cabin air circulation systems. Electric motors in aircraft contribute to weight reduction, energy efficiency, and improved reliability compared to traditional hydraulic or pneumatic systems.

These examples represent just a fraction of the machinery and equipment that rely on electric motors. From industrial applications to household appliances and transportation systems, electric motors are integral to modern technology, providing efficient and reliable mechanical power for a wide range of purposes.

electric motor

How do electric motors handle variations in voltage and frequency?

Electric motors are designed to handle variations in voltage and frequency to ensure proper operation and performance. The ability of electric motors to adapt to different voltage and frequency conditions depends on their design characteristics and the presence of additional control devices. Here’s a detailed explanation of how electric motors handle variations in voltage and frequency:

  1. Voltage Variations: Electric motors can handle certain variations in voltage without significant issues. The motor’s design factors in a voltage tolerance range to accommodate fluctuations in the power supply. However, excessive voltage variations beyond the motor’s tolerance can affect its performance and lead to problems such as overheating, increased energy consumption, and premature failure. To mitigate the impact of voltage variations, electric motors may incorporate the following features:
    • Voltage Regulation: Some electric motors, especially those used in industrial applications, may include voltage regulation mechanisms. These mechanisms help stabilize the motor’s voltage, compensating for slight voltage fluctuations and maintaining a relatively steady supply.
    • Voltage Protection Devices: Motor control circuits often incorporate protective devices such as voltage surge suppressors and voltage regulators. These devices help prevent voltage spikes and transient voltage variations from reaching the motor, safeguarding it against potential damage.
    • Voltage Monitoring: In certain applications, voltage monitoring systems may be employed to continuously monitor the motor’s supply voltage. If voltage variations exceed acceptable limits, the monitoring system can trigger alarms or take corrective actions, such as shutting down the motor to prevent damage.
  2. Frequency Variations: Electric motors are designed to operate at a specific frequency, typically 50 or 60 Hz, depending on the region. However, variations in the power system frequency can occur due to factors such as grid conditions or the use of frequency converters. Electric motors handle frequency variations in the following ways:
    • Constant Speed Motors: Most standard electric motors are designed for operation at a fixed speed corresponding to the rated frequency. When the frequency deviates from the rated value, the motor’s rotational speed changes proportionally. This can affect the motor’s performance, especially in applications where precise speed control is required.
    • Variable Frequency Drives (VFDs): Variable frequency drives are electronic devices that control the speed of an electric motor by varying the supplied frequency and voltage. VFDs allow electric motors to operate at different speeds and handle frequency variations effectively. By adjusting the frequency and voltage output, VFDs enable precise control of motor speed and torque, making them ideal for applications where speed control and energy efficiency are critical.
    • Inverter Duty Motors: Inverter duty motors are specifically designed to handle the frequency variations encountered when operated with VFDs. These motors feature improved insulation systems and robust designs to withstand the harmonic distortions and voltage spikes associated with VFD operation.
  3. Motor Protection: Electric motors may incorporate protective features to safeguard against adverse effects caused by voltage and frequency variations. These protection mechanisms include:
    • Thermal Protection: Motors often include built-in thermal protection devices such as thermal switches or sensors. These devices monitor the motor’s temperature and can automatically shut it down if it exceeds safe limits due to voltage or frequency variations that lead to excessive heating.
    • Overload Protection: Overload protection devices, such as overload relays, are employed to detect excessive currents drawn by the motor. If voltage or frequency variations cause the motor to draw abnormal currents, the overload protection device can interrupt the power supply to prevent damage.
    • Voltage/Frequency Monitoring: Advanced motor control systems may incorporate voltage and frequency monitoring capabilities. These systems continuously measure and analyze the motor’s supply voltage and frequency, providing real-time feedback on any deviations. If voltage or frequency variations exceed predetermined thresholds, the monitoring system can activate protective actions or trigger alarms for further investigation.

In summary, electric motors handle variations in voltage and frequency through design considerations, additional control devices, and protective mechanisms. Voltage variations are managed through voltage regulation, protective devices, and monitoring systems. Frequency variations can be accommodated by using variable frequency drives (VFDs) or employing inverter duty motors. Motor protection features, such as thermal protection and overload relays, help safeguard the motor against adverse effects caused by voltage and frequency variations. These measures ensure the reliable and efficient operation of electric motors under different voltage and frequency conditions.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China supplier Hm Series Asynchronous Electric Motor   vacuum pump and compressor	China supplier Hm Series Asynchronous Electric Motor   vacuum pump and compressor
editor by CX 2024-04-04

China Professional Yx3 Premium High Efficiency Aluminum Housing Three Phase Induction AC Electric Asynchronous Motor manufacturer

Product Description

Why choose us ?
ELECTRIC MOTOR FEATURES  

Electric motor frame from 56 – 355, output range from 0.17HP to 430HP

Motor mounting type B3 (IM 1001), B35 (IM 2001), B5 (IM 3001), B14 (IM 3601), B34 (IM 2101)

Optional voltage 110V, 120V, 220V, 240V, 220/380V, 230V/400V, 380V/660V, 50HZ or 60HZ

Protection type IP44, IP54, IP55 on request 

Multiple mounting arrangement for optional           
Aluminum frame, end shields and base    

Strong cast iron frame
High strength cable
Shaft key and protector supplied        
Superior paint finish         
45# steel shaft and stainless steel shaft is optional
Electric motor continuous duty S1,S4
Electric motor have vacuum impregnation for insulation
Electric motor is class F insulation and class H insulation is optional
Electric motor has been make according to ISO9001, CE, UL, CCC, GS request

All of our products are make according to GOST, RoHS and IEC standard.

High performance and IE1, IE2, IE3 efficiency  

 

OUR ELECRIC MOTOR FOR CUSTOMER BENEFITS

Electricity saving and quiet operation
Electric motor can withstand water, dust and vermin
Electric motor very easy installation
Electric motor dependable Corrosion resistant and long life to work
Reliability performance and very competitive price.
 

HOW TO MAKE MOTOR ON CHINAMFG COMPANY

1. Silicon steel DR510, 800, 600, 360 standard use stamping of lamination stator and rotor die-casting

2. 100% copper winding and inserting stator (manual and semi-automatically)

3. Stator Vacuum impregnation and drying

4. CNC machining motor shaft, frame, end shields, etc

5. Professional workman inspecting spare parts every processing

6. Electric motor assembly product line

7. Electric motor will 100% test before painting.

8. Electric motor spray-paint on motor painting product line

9. Electric motor will 100% check again before packing.

An electric motor from material to finish motor, must pass 15 time check, and 100% testing, output power, voltage, electric current, non-load, 50% load, 75% load, 100% load and check the nameplate, packing. Finally shipping to our customer.
 

Att:Our company price was based on high height cold rolled steel stator to promise the efficiency ,if you need to cheaper ,you can choose short height stator or hot cold rolled steel stator ,thankyou

Product details 

Parameter 

Connection 
connection method under 3KW                                                               connection method above 3KW

FAQ 

Q1: What about the shipping methods?

1): For urgent order and light weight, you can choose the following express: UPS, FedEx, TNT, DHL, EMS.

 For heavy weight, you can choose to deliver the goods by air or by sea to save cost.

Q2: What about the payment methods?

A2: We accept T/T, L/C for big amount, and for small amount, you can pay us by PayPal, Western Union etc.

Q3: How much does it cost to ship to my country?

A3: It depends on seasons. Fee is different in different seasons. You can consult us at all times.

Q4: What’s your delivery time?

A4: Usually we produce within 25-30days after the payment came.

Q5: Can I print our logo/code/series number on your motor?

A5: Yes, of course.

Q6: Can I order some sample for our testing?

A6: Yes, but it needs some expenses.

Q7: Can you customize my product in special requirement?

A7: Yes, we can offer OEM.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2.4.6.8.10.12
Samples:
US$ 287/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

Are there any emerging trends in electric motor technology, such as smart features?

Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:

  1. Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
  2. Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
  3. Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
  4. Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
  5. Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
  6. Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.

The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China Professional Yx3 Premium High Efficiency Aluminum Housing Three Phase Induction AC Electric Asynchronous Motor   manufacturer China Professional Yx3 Premium High Efficiency Aluminum Housing Three Phase Induction AC Electric Asynchronous Motor   manufacturer
editor by CX 2024-04-04

China Custom Zjy-Kf182-3.7-2500 AC Asynchronous Spindle Three Phase Electric Motor for Machine Tools supplier

Product Description

Product Description

        KND brand was founded in ZheJiang in 1993, mainly engaged in CNC system and industrial automation product research and development, production, sales and service. After nearly 30 years of development, KND  has a series of products in 6 categories, including CNC system, robot controller, pan-automation controller, feed drive and motor, spindle drive and motor, and industrial Internet, which meet the application needs of CNC lathes, CNC milling machines, machining centers, grinding machines and other tool and equipment industries and industrial robots, truss robots, workshop networking, data acquisition and analysis, etc., providing a sufficient range of choices for different users.

  • Motor Features
  • Beautiful appearance and compact structure
  • High-speed and high-precision encoder
  • Strong overload capacity, reliable operation of 1.5 times the rated power in 30 minutes
  • Protection level: IP54
  • Vibration level: Level B
  • Insulation class: F
  • KE: With case, lighter weight

Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.
>·Drawing Request
If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
>·On Your Need
We can modify standard products or customize them to meet your specific needs.

Model Explanation

Wiring

Photoelectric 1571-line/2500-line/5000-line Encoder Socket (12-core)
4-core: applicable for 80 series

Signal FG +5V 0V A+ B+ Z+ A- B- Z- / P T
Core No. 1 2 3 4 5 6 7 8 9 10 11 12

17-bit single turn/16-bit Multi-turn Battery Absolute Encoder (12-core)

Signal FG E- E+ SD- 0V SD+ +5V / / / P T
Core No. 1 2 3 4 5 6 7 8 9 10 11 12

Resolver Socket (12-core)

Signal FG EXC+ EXC- COS+ COS- SIN+ SIN- / / / P T
Core No. 1 2 3 4 5 6 7 8 9 10 11 12

Sin-cos Encoder Socket(12-core)

Signal FG +5V 0V A+ B+ Z+ A- B- Z- / P T
Core No. 1 2 3 4 5 6 7 8 9 10 11 12

Temperature Signal: Thermal protection switch,P and T are normal closed signals

Specification Parameter

Model Rated power
(KW)
Rated speed
(r/min)
Rated frequency
(Hz)
Rated current
(A)
Rated torque
(N▪m)
Maximum speed (r/min)
            A1 A B C D
ZJY-KF182-3.7-2500 3.7 2500 83.3 13.3 14.0 6000 8000 10000

Supplemental Instruction

Specification & Dimension

Model ZJY-KF182-3.7-2500 ZJY-KF182-3.7-1500
F(Frame NO.) 182 182
U 54 54
E 60 60
Y 220 220
L 393 393
Weight: Kg 39.5 39.5

*Note: We can manufacture products according to customer’s requirements.

Motor characteristic curve

Motor model Power/Speed curve Torque/Speed curve
KF182-3.7-2500 

Company Profile

 

ZheJiang KND Automation Technology CO.,Ltd

ABOUT US

       ZheJiang KND CNC Technique Co.LTD(KND) was established in 1993.It is a joint-stock private enterprise that is the earliest 1 focusing on the research,production,sales and service of CNC system in China.It has the qualification of national high-tech enterprise,and it is 1 of the largest CNC system brand in China.
       KND has the core technology of self-research and possesses independent intellectual property rights. After 30 years’ development, it has a number of series products: CNC system, robot controller, automation controller, feed driver and motor, spindle driver and motor, industrial Internet.These products can meet the application requirements of CNC lathes, CNC milling machines, machining centers,grinding machines and other industrial equipments.It can also be used in industrial robots, truss robots, workshop networking,data collection and analysis,and other automation fields.So,KND provided a full range of choices for different kinds of clients.

DEVELOPMENT HISTORY

PRODUCT DISTRIBUTION

                

MOTOR OVERVIEW
 

K series synchronous servo motor is a high-performance five-pole motor developed by KND;its power ranges from 0.2kW to 7.5kW and its frame includes 60, 80, 90, 110,130, 180 series. The kind of products have the characteristics of small size, high power, high speed, better encoder configuration, and strong overload capacity.If it is used with the SD510 series driver of KND, it can make the position control come true quickly and accurately.This combination can be applied in a variety of occasions which have a higher requirements for precision control.

ZJY (-K) series AC spindle servo motor used for CNC machine tools has the characteristics of compact structure,long service life,small moment of inertia and higher control accuracy. Combined with ZD210 series of new spindle servo driver, can make its performance get better display.It  can be widely used in various CNC machine tools and it can also be the spindle,feed and other parts of the CNC mechanical products.

ZJY (-K) series spindle servo motor’s parameters showed below, rated power: range from 3.7kW to 37kW, rated voltage: 380V, rated frequency: 25, 33.3, 50, 66.67, 83.33Hz, rated speed: 750, 1000, 1500,2000, 2500r/ min.The maximum speed can reach 12000r/ min. The working system of the motor is S1, the protection level is IP54, and the insulation level is F. There are thermal element in the interior of motors., this kind of moter lose heat by a independent fan.You can choose a motor with a photoelectric encoder or a rotary transformer,that depends on your needs.

EXHIBITIONS

CERTIFICATE PATENT DISPLAY

 

FAQ

Payments
1) We can accept EXW, FOB
2) Payment must be made before shipment.
3) Import duties, taxes and charges are not included in the item price or shipping charges. These charges are the buyer’s responsibility.

Shipping
1) We only ship to your confirmed address. Please make sure your shipping address is correct before purchase.
2) Most orders will be shipped out within 3-7 working days CHINAMFG payment confirmation.
3) Shipping normally takes 7-25 working days. Most of the items will delivery in 2 weeks, while there will be a delay for something we cannot control (such as the bad weather). If it happens, just contact us, we will help you check and resolve any problem.
4) Please check the package CHINAMFG receipt, if there are some damages, please contact us immediately.

Feedback & Refund
1) Feedback is important to us, if you have any problem with our products, please contact us, our technician will give you useful advises.
2) When you have the parcel and not satisfied with the goods or it is other problem, please tell us immediately, and provide us a photo showing the detail.
3) Any reason requiring for all refund. Items must be in original condition and no physical damage. Buyer responsible for all shipping cost.

If you need more information, please contact with us. We will attach great importance to your any problems.Hope we could establish a long-term effective cooperation.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Household Appliances
Operating Speed: Constant Speed
Number of Stator: Three-Phase

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

What maintenance practices are essential for prolonging the lifespan of an electric motor?

Maintaining electric motors is crucial for prolonging their lifespan and ensuring optimal performance. Proper maintenance practices help prevent failures, minimize downtime, and maximize the efficiency and reliability of electric motors. Here’s a detailed explanation of essential maintenance practices for prolonging the lifespan of an electric motor:

  1. Regular Inspections: Conduct regular visual inspections of the motor to identify any signs of wear, damage, or loose connections. Inspect the motor’s external components, such as the housing, bearings, cooling fans, and cables. Look for any unusual noise, vibration, or overheating during operation, as these can indicate potential issues that require attention.
  2. Lubrication: Proper lubrication is vital for the smooth operation and longevity of electric motors. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants. Apply lubrication to bearings, shafts, and other moving parts as specified. Over-lubrication or using incompatible lubricants can cause overheating and premature wear, so it’s essential to follow the recommended practices.
  3. Cleaning: Keep the motor clean and free from dirt, dust, and debris that can accumulate over time. Regularly clean the motor’s exterior using a soft brush or compressed air. Ensure that cooling vents and fans are clear of any obstructions to maintain proper airflow and prevent overheating. Cleanliness helps prevent insulation damage and improves heat dissipation.
  4. Alignment and Balance: Misalignment or imbalance in the motor’s shaft and coupling can lead to excessive vibrations and premature wear. Regularly check and correct any misalignment or imbalance issues using precision alignment tools. Proper alignment and balance reduce stress on bearings and extend their lifespan, contributing to the overall longevity of the motor.
  5. Temperature Monitoring: Monitor the motor’s temperature during operation using temperature sensors or thermal imaging techniques. Excessive heat can damage insulation, bearings, and other components. If the motor consistently operates at high temperatures, investigate the cause and take corrective actions, such as improving ventilation, reducing loads, or addressing any cooling system issues.
  6. Electrical Connections: Inspect and tighten electrical connections regularly to ensure secure and reliable connections. Loose or corroded connections can lead to voltage drops, increased resistance, and overheating. Check terminal blocks, wiring, and motor leads for any signs of damage or degradation. Properly torquing electrical connections and addressing any issues promptly helps maintain electrical integrity.
  7. Vibration Analysis: Perform regular vibration analysis to detect any abnormal vibration patterns that could indicate underlying issues. Vibration analysis tools and techniques can help identify unbalanced rotors, misalignment, bearing wear, or other mechanical problems. Addressing vibration issues early can prevent further damage and improve motor performance and longevity.
  8. Periodic Testing and Maintenance: Conduct periodic testing and maintenance based on the manufacturer’s recommendations and industry best practices. This may include insulation resistance testing, winding resistance testing, bearing lubrication checks, and other diagnostic tests. Such tests help identify potential problems before they escalate and allow for timely maintenance and repairs.
  9. Training and Documentation: Ensure that maintenance personnel are properly trained in electric motor maintenance practices. Provide training on inspection techniques, lubrication procedures, alignment methods, and other essential maintenance tasks. Maintain comprehensive documentation of maintenance activities, including inspection reports, maintenance schedules, and repair records.

By implementing these maintenance practices, motor owners can significantly prolong the lifespan of electric motors. Regular inspections, proper lubrication, cleaning, alignment, temperature monitoring, electrical connection maintenance, vibration analysis, periodic testing, and training contribute to the motor’s reliability, efficiency, and overall longevity.

electric motor

Can electric motors be used in renewable energy systems like wind turbines?

Yes, electric motors can be used in renewable energy systems like wind turbines. In fact, electric motors play a crucial role in converting the kinetic energy of the wind into electrical energy in wind turbines. Here’s a detailed explanation of how electric motors are utilized in wind turbines and their role in renewable energy systems:

Wind turbines are designed to capture the energy from the wind and convert it into electrical power. Electric motors are used in wind turbines to drive the rotation of the turbine blades and generate electricity through the following process:

  1. Wind Capture: The wind turbine blades are designed to efficiently capture the kinetic energy of the wind. As the wind blows, it causes the blades to rotate.
  2. Blade Rotation: The rotational motion of the turbine blades is achieved through electric motors known as pitch motors. Pitch motors adjust the angle or pitch of the blades to optimize their orientation relative to the wind direction. The electric motors drive the mechanical mechanism that rotates the blades, allowing them to capture the maximum energy from the wind.
  3. Power Generation: The rotation of the wind turbine blades drives the main shaft of the turbine, which is connected to an electric generator. The generator consists of another electric motor known as the generator motor or generator rotor. The rotational motion of the generator rotor within a magnetic field induces an electrical current in the generator’s stator windings, producing electricity.
  4. Power Conversion and Distribution: The electricity generated by the wind turbine’s generator motor is typically in the form of alternating current (AC). To make it compatible with the electrical grid or local power system, the AC power is converted to the appropriate voltage and frequency using power electronics such as inverters. These power electronics may also incorporate electric motors for various conversion and control functions.
  5. Integration with Renewable Energy Systems: Wind turbines, equipped with electric motors, are integrated into renewable energy systems to contribute to the generation of clean and sustainable power. Multiple wind turbines can be connected together to form wind farms, which collectively generate significant amounts of electricity. The electricity produced by wind turbines can be fed into the electrical grid, used to power local communities, or stored in energy storage systems for later use.

Electric motors in wind turbines enable the efficient conversion of wind energy into electrical energy, making wind power a viable and renewable energy source. The advancements in motor and generator technologies, along with control systems and power electronics, have enhanced the performance, reliability, and overall efficiency of wind turbines. Additionally, electric motors allow for precise control and adjustment of the turbine blades, optimizing the energy capture and minimizing the impact of varying wind conditions.

Overall, the use of electric motors in wind turbines is instrumental in harnessing the power of wind and contributing to the generation of clean and sustainable energy in renewable energy systems.

electric motor

How do electric motors generate motion and mechanical work?

Electric motors generate motion and mechanical work through the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors accomplish this:

  1. Magnetic Fields: Electric motors consist of a stationary part called the stator and a rotating part called the rotor. The stator contains coils of wire that are supplied with an electric current, creating a magnetic field around them. The rotor, on the other hand, typically has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor creates a rotational force, also known as torque. This torque causes the rotor to start rotating.
  3. Electromagnetic Induction: In certain types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current (AC) is supplied to the stator, it creates a changing magnetic field. This changing magnetic field induces voltage in the rotor, which leads to the flow of current in the rotor. The current in the rotor produces its own magnetic field, and the interaction between the stator’s magnetic field and the rotor’s magnetic field results in rotation.
  4. Commutation: In motors that use direct current (DC), such as brushed DC motors, commutation is employed. Commutation is the process of reversing the direction of current in the rotor’s electromagnets as the rotor rotates. This is done using a component called a commutator, which ensures that the magnetic fields of the rotor and the stator are always properly aligned. By periodically reversing the current, the commutator allows for continuous rotation.
  5. Conversion of Electrical Energy to Mechanical Energy: As the rotor rotates, the mechanical energy is produced. The rotational motion of the rotor is transferred to the motor’s output shaft, which is connected to the load or the device that needs to be driven. The mechanical work is performed as the output shaft drives the load, such as spinning a fan blade, rotating a conveyor belt, or powering a machine.

In summary, electric motors generate motion and mechanical work by utilizing the interaction of magnetic fields and the conversion of electrical energy into mechanical energy. The electric current flowing through the stator’s coils creates a magnetic field that interacts with the magnetic field of the rotor, producing torque and initiating rotation. In some motors, electromagnetic induction is employed, where a changing magnetic field induces voltage and current in the rotor, leading to rotation. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft, enabling the motor to perform mechanical work by driving the load.

China Custom Zjy-Kf182-3.7-2500 AC Asynchronous Spindle Three Phase Electric Motor for Machine Tools   supplier China Custom Zjy-Kf182-3.7-2500 AC Asynchronous Spindle Three Phase Electric Motor for Machine Tools   supplier
editor by CX 2024-04-03

China Hot selling China Ml 0.18kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw 3.7kw 4kw 5.5kw 7.5kw Single Phase Asynchronous Induction AC Electric Motor vacuum pump

Product Description

China ML 0.18kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw 3.7kw 4kw 5.5kw 7.5kw Single Phase Asynchronous Induction AC Electric Motor

Recommendation

 

 

Product Description

Model KW Currnet
(A)
Speed
(rpm)
Starting
Current(A)
Eff
(%)
Power Factor
(Φ)
Tn
(N.m)
Tst/Tn Tmax/In
ML-631-2 0.18 1.37 2710 8 63 0.9 0.63 2.5 1.6
ML-632-2 0.25 1.89 2710 10 64 0.9 0.88 2.5 1.6
ML-711-2 0.37 2.42 2780 15 70 0.95 1.27 2.5 1.7
ML-712-2 0.55 3.45 2790 20 73 0.95 1.88 2.5 1.7
ML-801-2 0.75 4.54 2800 30 74 0.97 2.59 2.5 1.7
ML-802-2 1.1 6.45 2810 40 76 0.97 3.74 2.5 1.7
ML-90S-2 1.5 8.62 2810 55 78 0.97 5.10 2.5 1.8
ML-90L-2 2.2 12.5 2810 75 79 0.97 7.48 2.2 1.8
ML-100L-2 3 16.6 2830 95 80 0.98 10.12 2.2 2
ML-112M1-2 3.7 21.48 2850 140 78 0.96 12.40 2.5 1.7
ML-112M2-2 4 22.18 285 150 80 0.98 13.41 2.5 1.7
                   
ML-631-4 0.12 1.04 1350 6 55 0.91 0.85 2.5 1.6
ML-632-4 0.18 1.54 1360 8.5 56 0.91 1.26 2.5 1.6
ML-711-4 0.25 1.94 1380 10 61 0.92 1.73 2.5 1.6
ML-712-4 0.37 2.8 1380 15 62.5 0.92 2.56 2.5 1.5
ML-801-4 0.55 3.8 1400 20 67 0.94 3.75 2.5 1.7
ML-802-4 0.75 4.75 1410 30 73 0.94 5.08 2.5 1.7
ML-90S-4 1.1 6.76 1410 40 74.5 0.95 7.45 2.2 1.8
ML-90L-4 1.5 9.03 1420 55 76 0.95 10.09 2.2 1.8
ML-100L1-4 2.2 12.6 1430 75 78 0.97 14.69 2.2 1.8
ML-100L2-4 3 17.02 1440 95 79 0.97 19.90 2.2 1.8
ML-112M1-4 3.7 20.7 1440 120 80 0.97 24.54 2.0 2.0
ML-112M2-4 4 22.41 1440 150 80 0.97 26.54 2.5 1.7

 

Model KW Currnet
(A)
Speed
(rpm)
Starting
Current(A)
Eff
(%)
Power Factor
(Φ)
Tn
(N.m)
Tst/Tn Tmax/In
MY-561-2 0.09 0.79 2760 3 54 0.92 0.31 0.65 1.6
MY-562-2 0.12 0.98 2770 4 58 0.92 0.41 0.65 1.6
MY-563-2 0.18 1.42 2780 5 60 0.92 0.62 0.65 1.6
MY-631-2 0.18 1.33 2780 5 62 0.95 0.62 0.6 1.7
MY-632-2 0.25 1.76 2780 7 65 0.95 0.86 0.6 1.7
MY-633-2 0.37 2.58 2780 8 67 0.93 1.27 0.45 1.65
MY-711-2 0.37 2.53 2800 10 67 0.95 1.26 0.6 1.7
MY-712-2 0.55 3.49 2810 15 70 0.98 1.87 0.55 1.7
MY-713-2 0.75 4.67 2810 20 72 0.97 2.55 0.48 1.8
MY-801-2 0.75 4.62 2810 20 72 0.98 2.55 0.35 1.7
MY-802-2 1.1 6.51 2820 28 75 0.98 3.73 0.33 1.7
MY-803-2 1.5 8.76 2810 40 76 0.98 5.10 0.33 1.8
MY-90S-2 1.5 8.76 2820 40 76 0.98 5.09 0.3 1.8
MY-90L-2 2.2 12.7 2820 60 77 0.98 7.45 0.3 1.8
MY-100L-2 3 17.1 2840 75 78 0.98 10.09 0.28 1.8
                   
MY-561-4 0.06 0.59 1360 2.5 48 0.92 0.41 0.75 1.6
MY-562-4 0.09 0.83 1370 3 51 0.92 0.63 0.75 1.6
MY-631-4 0.12 1.03 1380 3.5 55 0.92 0.83 0.65 1.6
MY-632-4 0.18 1.49 1390 5.5 57 0.92 1.24 0.65 1.5
MY-633-4 0.25 2.00 1370 5 58 0.95 1.74 0.6 1.6
MY-711-4 0.25 1.90 1400 8 61 0.94 1.71 0.5 1.5
MY-712-4 0.37 2.76 1400 10 62 0.94 2.52 0.5 1.5
MY-713-4 0.55 3.85 1400 12 64 0.97 3.75 0.48 1.7
MY-801-4 0.55 3.93 1400 15 64 0.95 3.75 0.35 1.7
MY-802-4 0.75 5.05 1410 20 68 0.95 5.08 0.33 1.7
MY-90S-4 1.1 6.87 1410 30 71 0.98 7.45 0.33 1.8
MY-90L-4 1.5 9.12 1420 40 73 0.98 10.09 0.3 1.8
MY-100L1-4 2.2 12.8 1440 60 76 0.98 14.59 0.28 1.8
MY-100L2-4 3 17.1 1440 75 78 0.98 19.90 0.28 1.8

Company Profile

Why choose us?
      Guarantee of our motors:18-24months
      General elivery time:15-30days
      Price of motors: Most reasonable during your all suppliers
      Packing:Strong export cartons/wooden case/plywood cases/pallets
      Payment way with your order: T/T,LC,DP,etc
      Sample order: Acceptable
      Shipment way: Sea ship,Air flight,Express way,Land transfer way.

 

Certifications

We have our own design and development team, and we can provide customers with standard AC motors. We can also customize single-phase/three-phase motors according to customer special needs. At present, our main motor products cover three-phase high-efficiency motors, general-purpose three-phase motors, single-phase motors, etc.
Main motor range: IE3/YE3, IE2/YE2, IE1/Y2, Y, YS, MS, YC, YL, YY, MC, MY, ML motors.
American standard NEMA motors
Russian standard GOST ANP motor
ZheJiang type AEEF motor, YC motor

Certificates and more COMPANY information please go to “ABOUT US”
—————————————————————————————————————————
Welcome to contact us directly…
 
LIYUAN MOTOR    INDUSTRIAL SOLUTIONS

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China Hot selling China Ml 0.18kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw 3.7kw 4kw 5.5kw 7.5kw Single Phase Asynchronous Induction AC Electric Motor   vacuum pump	China Hot selling China Ml 0.18kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw 3.7kw 4kw 5.5kw 7.5kw Single Phase Asynchronous Induction AC Electric Motor   vacuum pump
editor by CX 2024-04-03

China OEM 220-380-440V 2pole 4pole1HP 2HP 3HP 4HP 15HP GOST Anp Copper Wire Electrical Yc Yl Y Y2 Ye2 Y3 Ye3 Asynchronous Three Single Phase Induction AC Electric Motor vacuum pump ac

Product Description

 

PRODUCT OVERVIEW
  Applications:General purpose including cutting machines,
pumps,fans,conveyors,machines tools of farm duty and food process.
  Features :High efficiency and energy saving,low noise and little vibration.
  Insulation class :F
  Protection class:IP54 or IP55
CONDITIONS OF USE
  The altitude not exceeding 1000m above sea level.The ambient temperature subject to seasonal variations but not exceeding +40ºC and not less than -15°C.

 

Product Parameters

Packaging & Shipping

 

1) Packing Details
Packed in nylon firstly, then carton, and then reinforced with wooden case for outer packing.Or according to client’s requirement.

2) Shipping Details
Samples will be shipped within 10 days.
Batch order leading time according to the actual situation.

Company Profile

   ZHangZhoug CHINAMFG Motor Co., Ltd,located in Zeguo Town,HangZhou,HangZhou City,China,enjoys convenient land, sea and air transportation network.
  We are specialized in all kinds of small and middle-sized electric motors.our main products include electric motors of Y series,Y2/YE2 series,YS/MS series of Three Phase Asynchronous motor;YC series,YL series,MY/ML series,JY series of Single Phase motors etc.They are widely used in machine tool, fans, pumps, compressors, packaging machinery, mining machinery, construction machinery, food machinery and other mechanical transmission device.
  We have obtained ISO90001-2008 quality certificate, CE certificate and CCC certificate.Our products are widely exported to over 50 countries and regions,such as east Europe,Southeast Asia,South America,Middle East,Africa etc.Meanwhile,we have kept well touch with many trading companies at home and abroad for cooperation relationship.
  “Reliable quality, Excellent service, Reasonable price, Timely delivery” is our company persistent pursuit.Looking CHINAMFG to be your long term business partner.

Detailed Photos

FAQ

Q:Why choose us?
A:professional electric motor manufacturer for 10 years;
   good quality material and advanced test machine

Q:What is your MOQ?
A:10 pcs is ok for each model.At first time,trial order is okay.

Q:What about your warranty?
A: 1 year,except man-made destroyed.

Q: how about your payment way ?
A: 30% T/T in advance,70% balance on sight of BL copy by T/T or irrevocable L/C.

Q:Can you make OEM/ODM order?
A:Yes,we have rich experience on OEM/ODM order. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 2
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

What safety precautions should be followed when working with electric motors?

Working with electric motors requires adherence to specific safety precautions to ensure the well-being of individuals and prevent accidents. Electric motors involve electrical hazards that can cause electric shock, burns, or other injuries if proper safety measures are not followed. Here’s a detailed explanation of the safety precautions that should be followed when working with electric motors:

  1. Qualified Personnel: It is important to assign work on electric motors to qualified personnel who have the necessary knowledge, training, and experience in electrical systems and motor operation. Qualified electricians or technicians should handle installation, maintenance, and repairs involving electric motors.
  2. De-Energization and Lockout/Tagout: Before performing any work on electric motors, they should be de-energized, and appropriate lockout/tagout procedures should be followed. This involves isolating the motor from the power source, ensuring that it cannot be energized accidentally. Lockout/tagout procedures help prevent unexpected startup and protect workers from electrical hazards.
  3. Personal Protective Equipment (PPE): When working with electric motors, appropriate personal protective equipment should be worn. This may include insulated gloves, safety glasses, protective clothing, and footwear with electrical insulation. PPE helps protect against potential electrical shocks, burns, and other physical hazards.
  4. Inspection and Maintenance: Regular inspection and maintenance of electric motors are essential to identify potential issues or defects that could compromise safety. This includes checking for loose connections, damaged insulation, worn-out components, or overheating. Any defects or abnormalities should be addressed promptly by qualified personnel.
  5. Proper Grounding: Electric motors should be properly grounded to prevent electrical shock hazards. Grounding ensures that any fault currents are redirected safely to the ground, reducing the risk of electric shock to individuals working on or around the motor.
  6. Avoiding Wet Conditions: Electric motors should not be operated or worked on in wet or damp conditions unless they are specifically designed for such environments. Water or moisture increases the risk of electrical shock. If working in wet conditions is necessary, appropriate safety measures and equipment, such as waterproof PPE, should be used.
  7. Safe Electrical Connections: When connecting or disconnecting electric motors, proper electrical connections should be made. This includes ensuring that power is completely switched off, using appropriate tools and techniques for making connections, and tightening electrical terminals securely. Loose or faulty connections can lead to electrical hazards, overheating, or equipment failure.
  8. Awareness of Capacitors: Some electric motors contain capacitors that store electrical energy even when the motor is de-energized. These capacitors can discharge unexpectedly and cause electric shock. Therefore, it is important to discharge capacitors safely before working on the motor and to be cautious of potential residual energy even after de-energization.
  9. Training and Knowledge: Individuals working with electric motors should receive proper training and have a good understanding of electrical safety practices and procedures. They should be knowledgeable about the potential hazards associated with electric motors and know how to respond to emergencies, such as electrical shocks or fires.
  10. Adherence to Regulations and Standards: Safety precautions should align with relevant regulations, codes, and standards specific to electrical work and motor operation. These may include local electrical codes, occupational safety guidelines, and industry-specific standards. Compliance with these regulations helps ensure a safe working environment.

It is crucial to prioritize safety when working with electric motors. Following these safety precautions, along with any additional guidelines provided by equipment manufacturers or local regulations, helps minimize the risk of electrical accidents, injuries, and property damage. Regular training, awareness, and a safety-focused mindset contribute to a safer working environment when dealing with electric motors.

electric motor

Can you explain the basic principles of electric motor operation?

An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:

  1. Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
  3. Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
  4. Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
  5. Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.

In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.

China OEM 220-380-440V 2pole 4pole1HP 2HP 3HP 4HP 15HP GOST Anp Copper Wire Electrical Yc Yl Y Y2 Ye2 Y3 Ye3 Asynchronous Three Single Phase Induction AC Electric Motor   vacuum pump acChina OEM 220-380-440V 2pole 4pole1HP 2HP 3HP 4HP 15HP GOST Anp Copper Wire Electrical Yc Yl Y Y2 Ye2 Y3 Ye3 Asynchronous Three Single Phase Induction AC Electric Motor   vacuum pump ac
editor by CX 2024-03-28

China factory China Made Ye4 Ie4 30kw V1high Efficiency Squirrel Cage Three Phase AC Asynchronous Induction Electric Motor vacuum pump belt

Product Description

China made Ye4 Ie4 30kw V1high Efficiency Squirrel Cage Three Phase AC Asynchronous Induction Electric Motor

 

Product Description

 

Detailed Photos

 

Installation Instructions

 

 

 

Certifications

 

 

 

FAQ

Q: Are you trading company or manufacturer?
A: We are manufacturer.

Q: What is the payment terms?
A: 30% T/T in advance, 70% before shipment  or L/C at sight. 

Q: What is your delivery time?
A: standard product 20 days after receiving your L/C or T/T deposit.

Q: What is the MOQ of this item?
A: 1 units for small/medium size motors, unlimited for large ones.

Q: How long is your warranty?
A: 12 months after receiving B/L.

Q: Can we used our own brand on motors ?
A: Yes, OEM and ODM also to be provided. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China factory China Made Ye4 Ie4 30kw V1high Efficiency Squirrel Cage Three Phase AC Asynchronous Induction Electric Motor   vacuum pump belt	China factory China Made Ye4 Ie4 30kw V1high Efficiency Squirrel Cage Three Phase AC Asynchronous Induction Electric Motor   vacuum pump belt
editor by CX 2024-03-27