Tag Archives: 48v gear motor

China factory 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window vacuum pump oil near me

Product Description

Product Description

In such cases, BLDC Motor with Planetary Gear Box is appropriate for your products: Your projects require self locking and more running & holding torque. You are looking to exact position control on your mechanical products.

BLDC Motor BL42R50M12 with Planetary Gear Box is recommended for projects involving smart products and medical equipment, such as door opener, foldable fitness equipment, smart switch, servo motors and etc.

Please consider the following requirements before requesting customization: speed, holding torque, space available in your product, or other significant factors.

We offer various customization options to meet specific needs:
-Wider supply voltage range, additional voltage types,
-Extended temperature range, suitable for low and high-temperature environments
-Suitable for vacuum environments
-Modified for high-speed or high-load applications
-Motors that meet increased electrical or mechanical tolerance requirements

-Configurable shaft length and second shaft end -Modified shaft sizes and gear configurations

Drawing:

Characteristic of BLDC Motor

Innovative Product Display

Product Usage

Company Profile

Certifications

Exhibition

FAQ

FAQ
Q: Can I visit your factory before we place the order?

A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical  answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please 
contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other shipping way. 
Please contact us if you need other shipping  way before shipment.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 2-6
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

Can electric motors be adapted for use in both residential and industrial settings?

Yes, electric motors can be adapted for use in both residential and industrial settings. Their versatility, efficiency, and wide range of power options make them suitable for various applications in both environments. Here’s a detailed explanation of how electric motors can be adapted for use in residential and industrial settings:

  1. Residential Applications: Electric motors find numerous applications in residential settings, where their compact size, quiet operation, and energy efficiency are highly valued. Some common residential uses of electric motors include:
    • Home Appliances: Electric motors power a wide range of home appliances such as refrigerators, washing machines, dishwashers, vacuum cleaners, fans, and air conditioners. These motors are designed to provide efficient and reliable operation while minimizing noise and energy consumption.
    • Garage Door Openers: Electric motors are commonly used in residential garage door openers, providing convenient and automated access to the garage.
    • HVAC Systems: Electric motors drive the fans and compressors in heating, ventilation, and air conditioning (HVAC) systems, contributing to efficient climate control and indoor comfort.
    • Pool Pumps: Electric motors power pool pumps, circulating water and maintaining water quality in residential swimming pools.
    • Power Tools: Electric motors are integral components of various power tools used in residential settings, including drills, saws, and trimmers.
  2. Industrial Applications: Electric motors are extensively used in industrial settings due to their reliability, controllability, and adaptability to various industrial processes. Some common industrial applications of electric motors include:
    • Manufacturing Machinery: Electric motors drive a wide range of manufacturing machinery, including conveyor systems, pumps, compressors, mixers, and agitators. These motors are capable of providing precise speed and torque control, enhancing productivity and process efficiency.
    • Industrial Fans and Blowers: Electric motors power fans and blowers for ventilation, cooling, and air circulation in industrial facilities, contributing to a comfortable and safe working environment.
    • Machine Tools: Electric motors drive machine tools such as lathes, milling machines, and grinders, enabling precision machining operations in industrial manufacturing processes.
    • Material Handling Equipment: Electric motors are widely used in material handling equipment such as forklifts, conveyor systems, and hoists, facilitating efficient movement and transportation of goods within industrial facilities.
    • Pumps and Compressors: Electric motors power pumps and compressors in industrial applications, such as water supply systems, HVAC systems, and pneumatic systems.
  3. Adaptability and Customization: Electric motors can be adapted and customized to meet specific requirements in both residential and industrial settings. They are available in a wide range of sizes, power ratings, and configurations to accommodate diverse applications. Motors can be designed for different voltages, frequencies, and environmental conditions, allowing for seamless integration into various systems and equipment. Additionally, advancements in motor control technologies, such as variable frequency drives (VFDs), enable precise speed and torque control, making electric motors highly versatile and adaptable to different operational needs.
  4. Energy Efficiency and Environmental Benefits: The use of electric motors in both residential and industrial settings offers significant energy efficiency advantages. Electric motors have higher efficiency compared to other types of motors, resulting in reduced energy consumption and operational costs. Furthermore, electric motors produce zero direct emissions at the point of use, contributing to a cleaner and more sustainable environment. In residential settings, energy-efficient electric motors in appliances and HVAC systems help homeowners reduce their energy bills and minimize their carbon footprint. In industrial applications, the adoption of electric motors supports energy conservation initiatives and aligns with sustainability goals.

In summary, electric motors are adaptable for use in both residential and industrial settings. Their compact size, energy efficiency, controllability, and versatility make them suitable for a wide range of applications, from home appliances and garage door openers to manufacturing machinery and material handling equipment. The use of electric motors brings benefits such as improved energy efficiency, reduced emissions, quieter operation, and enhanced control, contributing to the efficiency and sustainability of residential and industrial operations.

electric motor

What advancements in electric motor technology have improved energy efficiency?

Advancements in electric motor technology have played a crucial role in improving energy efficiency, leading to more sustainable and environmentally friendly applications. Here’s a detailed explanation of some key advancements in electric motor technology that have contributed to enhanced energy efficiency:

  1. High-Efficiency Motor Designs: One significant advancement in electric motor technology is the development of high-efficiency motor designs. These designs focus on reducing energy losses during motor operation, resulting in improved overall efficiency. High-efficiency motors are engineered with optimized stator and rotor geometries, reduced core losses, and improved magnetic materials. These design enhancements minimize energy wastage and increase the motor’s efficiency, allowing it to convert a higher percentage of electrical input power into useful mechanical output power.
  2. Premium Efficiency Standards: Another notable advancement is the establishment and adoption of premium efficiency standards for electric motors. These standards, such as the International Electrotechnical Commission (IEC) IE3 and NEMA Premium efficiency standards, set minimum efficiency requirements for motors. Manufacturers strive to meet or exceed these standards by incorporating innovative technologies and design features that enhance energy efficiency. The implementation of premium efficiency standards has led to the widespread availability of more efficient motors in the market, encouraging energy-conscious choices and reducing energy consumption in various applications.
  3. Variable Speed Drives: Electric motor systems often operate under varying load conditions, and traditional motor designs operate at a fixed speed. However, the development and adoption of variable speed drives (VSDs) have revolutionized motor efficiency. VSDs, such as frequency converters or inverters, allow the motor’s speed to be adjusted according to the load requirements. By operating motors at the optimal speed for each task, VSDs minimize energy losses and significantly improve energy efficiency. This technology is particularly beneficial in applications with variable loads, such as HVAC systems, pumps, and conveyors.
  4. Improved Motor Control and Control Algorithms: Advanced motor control techniques and algorithms have contributed to improved energy efficiency. These control systems employ sophisticated algorithms to optimize motor performance, including speed control, torque control, and power factor correction. By precisely adjusting motor parameters based on real-time operating conditions, these control systems minimize energy losses and maximize motor efficiency. Additionally, the integration of sensor technology and feedback loops enables closed-loop control, allowing motors to respond dynamically and adaptively to changes in load demand, further enhancing energy efficiency.
  5. Use of Permanent Magnet Motors: Permanent magnet (PM) motors have gained popularity due to their inherent high energy efficiency. PM motors utilize permanent magnets in the rotor, eliminating the need for rotor windings and reducing rotor losses. This design enables PM motors to achieve higher power densities, improved efficiency, and enhanced performance compared to traditional induction motors. The use of PM motors is particularly prevalent in applications where high efficiency and compact size are critical, such as electric vehicles, appliances, and industrial machinery.
  6. Integration of Advanced Materials: Advances in materials science have contributed to improved motor efficiency. The utilization of advanced magnetic materials, such as rare-earth magnets, allows for stronger and more efficient magnetic fields, resulting in higher motor efficiency. Additionally, the development of low-loss electrical steel laminations and improved insulation materials reduces core losses and minimizes energy wastage. These advanced materials enhance the overall efficiency of electric motors, making them more energy-efficient and environmentally friendly.

The advancements in electric motor technology, including high-efficiency motor designs, premium efficiency standards, variable speed drives, improved motor control, permanent magnet motors, and advanced materials, have collectively driven significant improvements in energy efficiency. These advancements have led to more efficient motor systems, reduced energy consumption, and increased sustainability across a wide range of applications, including industrial machinery, transportation, HVAC systems, appliances, and renewable energy systems.

electric motor

Can you explain the basic principles of electric motor operation?

An electric motor operates based on several fundamental principles of electromagnetism and electromagnetic induction. These principles govern the conversion of electrical energy into mechanical energy, enabling the motor to generate rotational motion. Here’s a detailed explanation of the basic principles of electric motor operation:

  1. Magnetic Fields: Electric motors utilize magnetic fields to create the forces necessary for rotation. The motor consists of two main components: the stator and the rotor. The stator contains coils of wire wound around a core and is responsible for generating a magnetic field. The rotor, which is connected to the motor’s output shaft, has magnets or electromagnets that produce their own magnetic fields.
  2. Magnetic Field Interaction: When an electric current flows through the coils in the stator, it generates a magnetic field. This magnetic field interacts with the magnetic field produced by the rotor. The interaction between these two magnetic fields results in a rotational force, known as torque, that causes the rotor to rotate.
  3. Electromagnetic Induction: Electric motors can also operate on the principle of electromagnetic induction. In these motors, alternating current (AC) is supplied to the stator coils. The alternating current produces a changing magnetic field that induces a voltage in the rotor. This induced voltage then generates a current in the rotor, which creates its own magnetic field. The interaction between the stator’s magnetic field and the rotor’s magnetic field leads to rotation.
  4. Commutation: In certain types of electric motors, such as brushed DC motors, commutation is employed. Commutation refers to the process of reversing the direction of the current in the rotor’s electromagnets to maintain continuous rotation. This is achieved using a component called a commutator, which periodically switches the direction of the current as the rotor rotates. By reversing the current at the right time, the commutator ensures that the magnetic fields of the stator and the rotor remain properly aligned, resulting in continuous rotation.
  5. Output Shaft: The rotational motion generated by the interaction of magnetic fields is transferred to the motor’s output shaft. The output shaft is connected to the load or the device that needs to be driven, such as a fan, a pump, or a conveyor belt. As the motor rotates, the mechanical energy produced is transmitted through the output shaft, enabling the motor to perform useful work.

In summary, the basic principles of electric motor operation involve the generation and interaction of magnetic fields. By supplying an electric current to the stator and utilizing magnets or electromagnets in the rotor, electric motors create magnetic fields that interact to produce rotational motion. Additionally, the principle of electromagnetic induction allows for the conversion of alternating current into mechanical motion. Commutation, in certain motor types, ensures continuous rotation by reversing the current in the rotor’s electromagnets. The resulting rotational motion is then transferred to the motor’s output shaft to perform mechanical work.

China factory 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window   vacuum pump oil near me		China factory 12V 24V 48V Micro DC Gear Brushless BLDC Electric Motor Planetary/ Supr Gearbox Motor with Gearbox Customized for Mower/Drone /Automatic Door /Electric Window   vacuum pump oil near me
editor by CX 2024-04-03

China Good quality 12V 24V 48V 72V 310V 90nm 80 Rpm 60rpm 1kw Brushless DC Worm Gear Electric Motor a/c vacuum pump

Product Description

Product Description

Feature:
A. High power range from 50W to 2KW
B. Dia: 57mm-110mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
K.High-performance and stable matching driver and controller

Kindly remind: As different customers may need different motor parameter for fitting your equipment. If below motor can’t fit your need, please kindly send inquiry to us with information for rated power or torque,rated speed, and rated voltage for our new size drawing making for you. CLICK HERE to contact me. Thanks a lot!
Δ 86mm BLDC Motor with RV40 Worm Gearbox Size Dimensions
Dimensions (Unit: mm )
Mounting screws are included with gear head.

Δ Brushless DC Motor Specification:

Motor Power (W)

600

1000

1500

Motor Length(mm)

123

153

183

Motor Rated Speed(rpm)

2000

Δ RV63 Worm Gearbox Specification:

Gear Ratio 7.5 10 15 20 25 30 40 50 60 80 100
Rated output speed(rpm) 267 200 133 100 80 67 50 40 33 25 20
Rated Torque(N.m)  28.7 38.2 57.3 74.5 90.7 106 133.7 124 94 115 87

Other Specification form:
Δ Motor interface, Voltage, Speed can be customized.

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

 

More Motor Flange Size

Δ More Motor Flange Size to choose, if you need other size. Welcome to contact us to custom.

BLDC Motor with Gearbox Range

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Samples:
US$ 275.4/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

What factors should be considered when selecting the right electric motor for a task?

When selecting the right electric motor for a task, several factors need to be considered to ensure optimal performance and compatibility. Here’s a detailed overview of the factors that should be taken into account:

  1. Load Requirements: The first consideration is understanding the specific load requirements of the task. This includes factors such as the torque or force needed to drive the load, the speed range required, and any variations in load that may occur. By accurately assessing the load requirements, you can determine the appropriate motor type, size, and characteristics needed to handle the task effectively.
  2. Motor Type: Different motor types are suited for specific applications. Common motor types include AC induction motors, brushless DC motors, brushed DC motors, and stepper motors. Each type has its own advantages and limitations in terms of speed range, torque characteristics, efficiency, control requirements, and cost. Choosing the right motor type depends on the task’s specific requirements and the desired performance.
  3. Power Supply: Consider the available power supply for the motor. Determine whether the application requires AC or DC power and the voltage and frequency range of the power source. Ensure that the motor’s power requirements align with the available power supply to avoid compatibility issues.
  4. Efficiency and Energy Consumption: Efficiency is an important factor to consider, especially for applications where energy consumption is a concern. Higher motor efficiency translates to lower energy losses and reduced operating costs over the motor’s lifetime. Look for motors with high efficiency ratings to minimize energy consumption and improve overall system efficiency.
  5. Environmental Factors: Assess the environmental conditions in which the motor will operate. Consider factors such as temperature, humidity, dust, and vibration. Some motors are specifically designed to withstand harsh environmental conditions, while others may require additional protection or enclosures. Choosing a motor that is suitable for the intended environment will ensure reliable and long-lasting operation.
  6. Control and Feedback Requirements: Determine whether the application requires precise control over motor speed, position, or torque. Some tasks may benefit from closed-loop control systems that incorporate feedback devices like encoders or sensors to provide accurate motor control. Evaluate the control and feedback requirements of the task and select a motor that is compatible with the desired control mechanism.
  7. Physical Constraints: Consider any physical constraints or limitations that may impact motor selection. These constraints may include space restrictions, weight limitations, mounting options, and mechanical compatibility with other components or equipment. Ensure that the chosen motor can physically fit and integrate into the system without compromising performance or functionality.
  8. Cost and Budget: Finally, consider the budget and cost constraints associated with the motor selection. Evaluate the initial purchase cost of the motor as well as the long-term operating costs, including maintenance and energy consumption. Strive to strike a balance between performance and cost-effectiveness to ensure the best value for your specific application.

By considering these factors, you can make an informed decision when selecting the right electric motor for a task. It is crucial to thoroughly analyze the requirements and match them with the motor’s specifications to achieve optimal performance, reliability, and efficiency.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

How do electric motors handle variations in load, speed, and torque?

Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:

  1. Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
  2. Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
  3. Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
  4. Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.

In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.

China Good quality 12V 24V 48V 72V 310V 90nm 80 Rpm 60rpm 1kw Brushless DC Worm Gear Electric Motor   a/c vacuum pump		China Good quality 12V 24V 48V 72V 310V 90nm 80 Rpm 60rpm 1kw Brushless DC Worm Gear Electric Motor   a/c vacuum pump
editor by CX 2024-03-29

China Hot selling ZD 12V 24V 48V 10W-300W Round Flange Brushless Planetary Gear Motor With Gearbox ac motor

Product Description

Model Selection

       ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations.

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Product Parameters


Planetary Gear Motor

MOTOR FRAME SIZE 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm
MOTOR TYPE Brush or Brushless
OUTPUT POWER 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized)
Voltage type 12V,24V,48V
Accessories Electric Brake / Encoder
GEARBOX FRAME SIZE 32 mm / 42mm / 52mm / 62mm /72mm/82mm
Gear Ratio 3.65K-392.98K
Type Of Pinion GN Type / GU Type

Type Of Planetary Gear Motor

Other Products

Company Profile

 

Application: Universal, Industrial, Household Appliances
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Type: Z2
Customization:
Available

|

Customized Request

Motor

Benefits of a Planetary Motor

A planetary motor has many benefits. Its compact design and low noise makes it a good choice for any application. Among its many uses, planetary gear motors are found in smart cars, consumer electronics, intelligent robots, communication equipment, and medical technology. They can even be found in smart homes! Read on to discover the benefits of a planetary gear motor. You’ll be amazed at how versatile and useful it is!

Self-centering planet gears ensure a symmetrical force distribution

A planetary motor is a machine with multiple, interlocking planetary gears. The output torque is inversely proportional to the diameters of the planets, and the transmission size has no bearing on the output torque. A torsional stress analysis of the retaining structure for this type of motor found a maximum shear stress of 64 MPa, which is equivalent to a safety factor of 3.1 for 6061 aluminum. Self-centering planet gears are designed to ensure a symmetrical force distribution throughout the transmission system, with the weakest component being the pinions.
A planetary gearbox consists of ring and sun gears. The pitch diameters of ring and planet gears are nearly equal. The number of teeth on these gears determines the average gear-ratio per output revolution. This error is related to the manufacturing precision of the gears. The effect of this error is a noise or vibration characteristic of the planetary gearbox.
Another design for a planetary gearbox is a traction-based variant. This design eliminates the need for timing marks and other restrictive assembly conditions. The design of the ring gear is similar to that of a pencil sharpener mechanism. The ring gear is stationary while planet gears extend into cylindrical cutters. When placed on the sun’s axis, the pencil sharpening mechanism revolves around the ring gear to sharpen the pencil.
The JDS eliminates the need for conventional planetary carriers and is mated with the self-centering planet gears by dual-function components. The dual-function components synchronize the rolling motion and traction of the gears. They also eliminate the need for a carrier and reduce the force distribution between the rotor and stator.

Metal gears

A planetary motor is a type of electric drive that uses a series of metal gears. These gears share a load attached to the output shaft to generate torque. The planetary motor is often CNC controlled, with extra-long shafts, which allow it to fit into very compact designs. These gears are available in sizes from seven millimeters to 12 millimeters. They can also be fitted with encoders.
Planetary gearing is widely used in various industrial applications, including automobile transmissions, off-road transmissions, and wheel drive motors. They are also used in bicycles to power the shift mechanism. Another use for planetary gearing is as a powertrain between an internal combustion engine and an electric motor. They are also used in forestry applications, such as debarking equipment and sawing. They can be used in other industries as well, such as pulp washers and asphalt mixers.
Planetary gear sets are composed of three types of gears: a sun gear, planet gears, and an outer ring. The sun gear transfers torque to the planet gears, and the planet gears mesh with the outer ring gear. Planet carriers are designed to deliver high-torque output at low speeds. These gears are mounted on carriers that are moved around the ring gear. The planet gears mesh with the ring gears, and the sun gear is mounted on a moveable carrier.
Plastic planetary gear motors are less expensive to produce than their metal counterparts. However, plastic gears suffer from reduced strength, rigidity, and load capacity. Metal gears are generally easier to manufacture and have less backlash. Plastic planetary gear motor bodies are also lighter and less noisy. Some of the largest plastic planetary gear motors are made in collaboration with leading suppliers. When buying a plastic planetary gear motor, be sure to consider what materials it is made of.
Motor

Encoder

The Mega Torque Planetary Encoder DC Geared Motor is designed with a Japanese Mabuchi motor RS-775WC, a 200 RPM base motor. It is capable of achieving stall torque at low speeds, which is impossible to achieve with a simple DC motor. The planetary encoder provides five pulses per revolution, making it perfect for applications requiring precise torque or position. This motor requires an 8mm hex coupling for proper use.
This encoder has a high resolution and is suitable for ZGX38REE, ZGX45RGG and ZGX50RHH. It features a magnetic disc and poles and an optical disc to feed back signals. It can count paulses as the motor passes through a hall on the circuit board. Depending on the gearbox ratio, the encoder can provide up to two million transitions per rotation.
The planetary gear motor uses a planetary gear system to distribute torque in synchrony. This minimizes the risk of gear failure and increases the overall output capacity of the device. On the other hand, a spur gear motor is a simpler design and cheaper to produce. The spur gear motor works better for lower torque applications as each gear bears all the load. As such, the torque capacity of the spur gear motor is lower than that of a planetary gear motor.
The REV UltraPlanetary gearbox is designed for FTC and has three different output shaft options. The output shaft is made of 3/8-inch hex, allowing for flexible shaft replacement. These motors are a great value as they can be used to meet a wide range of power requirements. The REV UltraPlanetary gearbox and motor are available for very reasonable prices and a female 5mm hex output shaft can be used.

Durability

One of the most common questions when selecting a planetary motor is “How durable is it?” This is a question that’s often asked by people. The good news is that planetary motors are extremely durable and can last for a long time if properly maintained. For more information, read on! This article will cover the durability and efficiency of planetary gearmotors and how you can choose the best one for your needs.
First and foremost, planetary gear sets are made from metal materials. This increases their lifespan. The planetary gear set is typically made of metals such as nickel-steel and steel. Some planetary gear motors use plastic. Steel-cut gears are the most durable and suitable for applications that require more torque. Nickel-steel gears are less durable, but are better able to hold lubricant.
Durability of planetary motor gearbox is important for applications requiring high torque versus speed. VEX VersaPlanetary gearboxes are designed for FRC(r) use and are incredibly durable. They are expensive, but they are highly customizable. The planetary gearbox can be removed for maintenance and replacement if necessary. Parts for the gearbox can be purchased separately. VEX VersaPlanetary gearboxes also feature a pinion clamped onto the motor shaft.
Dynamic modeling of the planetary gear transmission system is important for understanding its durability. In previous studies, uncoupled and coupled meshing models were used to investigate the effect of various design parameters on the vibration characteristics of the planetary gear system. This analysis requires considering the role of the mesh stiffness, structure stiffness, and moment of inertia. Moreover, dynamic models for planetary gear transmission require modeling the influence of multiple parameters, such as mesh stiffness and shaft location.
Motor

Cost

The planetary gear motor has multiple contact points that help the rotor rotate at different speeds and torques. This design is often used in stirrers and large vats of liquid. This type of motor has a low initial cost and is more commonly found in low-torque applications. A planetary gear motor has multiple contact points and is more effective for applications requiring high torque. Gear motors are often found in stirring mechanisms and conveyor belts.
A planetary gearmotor is typically made from four mechanically linked rotors. They can be used for various applications, including automotive and laboratory automation. The plastic input stage gears reduce noise at higher speeds. Steel gears can be used for high torques and a modified lubricant is often added to reduce weight and mass moment of inertia. Its low-cost design makes it an excellent choice for robots and other applications.
There are many different types of planetary gear motors available. A planetary gear motor has three gears, the sun gear and planet gears, with each sharing equal amounts of work. They are ideal for applications requiring high torque and low-resistance operation, but they require more parts than their single-stage counterparts. The steel cut gears are the most durable, and are often used in applications that require high speeds. The nickel-steel gears are more absorptive, which makes them better for holding lubricant.
A planetary gear motor is a high-performance electrical vehicle motor. A typical planetary gear motor has a 3000 rpm speed, a peak torque of 0.32 Nm, and is available in 24V, 36V, and 48V power supply. It is also quiet and efficient, requiring little maintenance and offering greater torque to a modern electric car. If you are thinking of buying a planetary gear motor, be sure to do a bit of research before purchasing one.

China Hot selling ZD 12V 24V 48V 10W-300W Round Flange Brushless Planetary Gear Motor With Gearbox   ac motor	China Hot selling ZD 12V 24V 48V 10W-300W Round Flange Brushless Planetary Gear Motor With Gearbox   ac motor
editor by CX 2023-10-20

China Good quality ZD Leader 60mm-104mm High Torque Low RPM 6W 15W 25W 30W 40W 60W 90W 120W 150W- 300W 12V 24V 48V 90V 110-220V Brushed Electric DC Gear Motor vacuum pump oil near me

Product Description

Model Selection

       ZD Leader has a wide range of micro motor production lines in the industry, including DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor,  Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations. 

• Model Selection
Our professional sales representive and technical team will choose the right model and transmission solutions for your usage depend on your specific parameters.

• Drawing Request

If you need more product parameters, catalogues, CAD or 3D drawings, please contact us.
 

• On Your Need

We can modify standard products or customize them to meet your specific needs.

Product Parameters

DC Gear Motor

MOTOR FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
MOTOR TYPE Brushed
OUTPUT POWER 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized)
OUTPUT SHAFT  8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized)
Voltage type 12V,24V,90V,220V
Accessories Electric Brake / Encoder
GEARBOX FRAME SIZE 60 mm / 70mm / 80mm / 90mm / 104mm
Gear Ratio 3K-200K
Type Of Pinion GN Type / GU Type
Gearbox Type Regular Square Case gearbox / Right Angle Gearbox / L Type Gearbox

Type Of DC Motor

Other Products

 

Company Profile

 

Application: Universal, Industrial, Household Appliances, Equipment
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6
Customization:
Available

|

electric motor

Can electric motors be adapted for use in both residential and industrial settings?

Yes, electric motors can be adapted for use in both residential and industrial settings. Their versatility, efficiency, and wide range of power options make them suitable for various applications in both environments. Here’s a detailed explanation of how electric motors can be adapted for use in residential and industrial settings:

  1. Residential Applications: Electric motors find numerous applications in residential settings, where their compact size, quiet operation, and energy efficiency are highly valued. Some common residential uses of electric motors include:
    • Home Appliances: Electric motors power a wide range of home appliances such as refrigerators, washing machines, dishwashers, vacuum cleaners, fans, and air conditioners. These motors are designed to provide efficient and reliable operation while minimizing noise and energy consumption.
    • Garage Door Openers: Electric motors are commonly used in residential garage door openers, providing convenient and automated access to the garage.
    • HVAC Systems: Electric motors drive the fans and compressors in heating, ventilation, and air conditioning (HVAC) systems, contributing to efficient climate control and indoor comfort.
    • Pool Pumps: Electric motors power pool pumps, circulating water and maintaining water quality in residential swimming pools.
    • Power Tools: Electric motors are integral components of various power tools used in residential settings, including drills, saws, and trimmers.
  2. Industrial Applications: Electric motors are extensively used in industrial settings due to their reliability, controllability, and adaptability to various industrial processes. Some common industrial applications of electric motors include:
    • Manufacturing Machinery: Electric motors drive a wide range of manufacturing machinery, including conveyor systems, pumps, compressors, mixers, and agitators. These motors are capable of providing precise speed and torque control, enhancing productivity and process efficiency.
    • Industrial Fans and Blowers: Electric motors power fans and blowers for ventilation, cooling, and air circulation in industrial facilities, contributing to a comfortable and safe working environment.
    • Machine Tools: Electric motors drive machine tools such as lathes, milling machines, and grinders, enabling precision machining operations in industrial manufacturing processes.
    • Material Handling Equipment: Electric motors are widely used in material handling equipment such as forklifts, conveyor systems, and hoists, facilitating efficient movement and transportation of goods within industrial facilities.
    • Pumps and Compressors: Electric motors power pumps and compressors in industrial applications, such as water supply systems, HVAC systems, and pneumatic systems.
  3. Adaptability and Customization: Electric motors can be adapted and customized to meet specific requirements in both residential and industrial settings. They are available in a wide range of sizes, power ratings, and configurations to accommodate diverse applications. Motors can be designed for different voltages, frequencies, and environmental conditions, allowing for seamless integration into various systems and equipment. Additionally, advancements in motor control technologies, such as variable frequency drives (VFDs), enable precise speed and torque control, making electric motors highly versatile and adaptable to different operational needs.
  4. Energy Efficiency and Environmental Benefits: The use of electric motors in both residential and industrial settings offers significant energy efficiency advantages. Electric motors have higher efficiency compared to other types of motors, resulting in reduced energy consumption and operational costs. Furthermore, electric motors produce zero direct emissions at the point of use, contributing to a cleaner and more sustainable environment. In residential settings, energy-efficient electric motors in appliances and HVAC systems help homeowners reduce their energy bills and minimize their carbon footprint. In industrial applications, the adoption of electric motors supports energy conservation initiatives and aligns with sustainability goals.

In summary, electric motors are adaptable for use in both residential and industrial settings. Their compact size, energy efficiency, controllability, and versatility make them suitable for a wide range of applications, from home appliances and garage door openers to manufacturing machinery and material handling equipment. The use of electric motors brings benefits such as improved energy efficiency, reduced emissions, quieter operation, and enhanced control, contributing to the efficiency and sustainability of residential and industrial operations.

electric motor

Are there any emerging trends in electric motor technology, such as smart features?

Yes, there are several emerging trends in electric motor technology, including the integration of smart features. These trends aim to improve motor performance, efficiency, and functionality, while also enabling connectivity and advanced control capabilities. Here’s a detailed explanation of some of the emerging trends in electric motor technology:

  1. Internet of Things (IoT) Integration: Electric motors are becoming increasingly connected as part of the broader IoT ecosystem. IoT integration allows motors to communicate, share data, and be remotely monitored and controlled. By embedding sensors, communication modules, and data analytics capabilities, motors can provide real-time performance data, predictive maintenance insights, and energy consumption information. This connectivity enables proactive maintenance, optimized performance, and enhanced energy efficiency.
  2. Condition Monitoring and Predictive Maintenance: Smart electric motors are equipped with sensors that monitor various parameters such as temperature, vibration, and current. This data is analyzed in real-time to detect anomalies and potential faults. By implementing predictive maintenance algorithms, motor failures can be anticipated, enabling maintenance activities to be scheduled proactively. This trend reduces unplanned downtime, improves reliability, and optimizes maintenance costs.
  3. Advanced Motor Control and Optimization: Emerging electric motor technologies focus on advanced motor control techniques and optimization algorithms. These advancements allow for precise control of motor performance, adapting to changing load conditions, and optimizing energy efficiency. Additionally, sophisticated control algorithms enable motor systems to operate in coordination with other equipment, such as variable speed drives, power electronics, and energy storage systems, resulting in improved overall system efficiency.
  4. Energy Harvesting and Regenerative Features: Electric motors can harness energy through regenerative braking and energy harvesting techniques. Regenerative braking allows motors to recover and convert kinetic energy into electrical energy, which can be fed back into the system or stored for later use. Energy harvesting technologies, such as piezoelectric or electromagnetic systems, can capture ambient energy and convert it into usable electrical energy. These features enhance energy efficiency and reduce overall power consumption.
  5. Integration with Artificial Intelligence (AI) and Machine Learning (ML): The integration of electric motors with AI and ML technologies enables advanced motor control, optimization, and decision-making capabilities. AI and ML algorithms analyze motor performance data, identify patterns, and make real-time adjustments to optimize efficiency and performance. The combination of AI/ML with electric motors opens up possibilities for autonomous motor control, adaptive energy management, and intelligent fault detection.
  6. Miniaturization and Lightweight Design: Emerging trends in electric motor technology focus on miniaturization and lightweight design without compromising performance. This trend is particularly relevant for portable devices, electric vehicles, and aerospace applications. Advancements in materials, manufacturing processes, and motor design allow for smaller, lighter, and more powerful motors, enabling greater mobility, improved efficiency, and increased power density.

The integration of smart features in electric motor technology is driving advancements in connectivity, data analytics, predictive maintenance, advanced control, energy harvesting, AI/ML integration, and miniaturization. These trends are revolutionizing the capabilities and functionality of electric motors, making them more intelligent, efficient, and adaptable to various applications. As technology continues to evolve, electric motors are expected to play a crucial role in the ongoing transition towards smart and sustainable industries.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China Good quality ZD Leader 60mm-104mm High Torque Low RPM 6W 15W 25W 30W 40W 60W 90W 120W 150W- 300W 12V 24V 48V 90V 110-220V Brushed Electric DC Gear Motor   vacuum pump oil near me		China Good quality ZD Leader 60mm-104mm High Torque Low RPM 6W 15W 25W 30W 40W 60W 90W 120W 150W- 300W 12V 24V 48V 90V 110-220V Brushed Electric DC Gear Motor   vacuum pump oil near me
editor by CX 2023-10-20

China ZD 32mm 42mm 52mm 62mm 72mm 82mm 12V 24V 48V 10W-300W Round Flange High Torque DC Brushless or Brush DC Planetary Gear Motor With Planetary Gearbox motor electric

Solution Description

Model Variety

       ZD Leader has a vast range of micro motor production traces in the industry, which includes DC Motor, AC Motor, Brushless Motor, Planetary Gear Motor, Drum Motor, Planetary Gearbox, RV Reducer and Harmonic Gearbox etc. By means of technical innovation and customization, we help you create fantastic software methods and offer versatile solutions for various industrial automation circumstances.

• Product Assortment
Our specialist revenue representive and technological staff will pick the right design and transmission answers for your usage depend on your specific parameters.

• Drawing Ask for

If you require far more solution parameters, catalogues, CAD or 3D drawings, please get in touch with us.
 

• On Your Need to have

We can modify regular items or personalize them to fulfill your particular wants.

Solution Parameters


Planetary Equipment Motor

MOTOR Body Dimension 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm
MOTOR Variety Brush or Brushless
OUTPUT Electrical power 10W / 15W / 25W / 40W / 60W / 90W / one hundred twenty W / 140W / 180W / 200W / 300W(Can Be Personalized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Tailored)
Voltage variety 12V,24V,48V
Components Electric powered Brake / Encoder
GEARBOX Body Dimensions 32 mm / 42mm / 52mm / 62mm /72mm/82mm
Equipment Ratio three.65K-392.98K
Sort Of Pinion GN Variety / GU Sort

Sort Of Planetary Gear Motor

Other Merchandise

Organization Profile

 


/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Equipment
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6

###

Customization:
Available

|


###

MOTOR FRAME SIZE 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm
MOTOR TYPE Brush or Brushless
OUTPUT POWER 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized)
Voltage type 12V,24V,48V
Accessories Electric Brake / Encoder
GEARBOX FRAME SIZE 32 mm / 42mm / 52mm / 62mm /72mm/82mm
Gear Ratio 3.65K-392.98K
Type Of Pinion GN Type / GU Type

/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Equipment
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6

###

Customization:
Available

|


###

MOTOR FRAME SIZE 32 mm / 42mm / 52mm / 62mm / 72mm / 82mm / 105mm / 120mm
MOTOR TYPE Brush or Brushless
OUTPUT POWER 10W / 15W / 25W / 40W / 60W / 90W / 120 W / 140W / 180W / 200W / 300W(Can Be Customized)
OUTPUT SHAFT 8mm / 10mm / 12mm / 15mm ; Round Shaft, D-Cut Shaft, Key-Way Shaft (Can Be Customized)
Voltage type 12V,24V,48V
Accessories Electric Brake / Encoder
GEARBOX FRAME SIZE 32 mm / 42mm / 52mm / 62mm /72mm/82mm
Gear Ratio 3.65K-392.98K
Type Of Pinion GN Type / GU Type

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Motor

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China ZD 32mm 42mm 52mm 62mm 72mm 82mm 12V 24V 48V 10W-300W Round Flange High Torque DC Brushless or Brush DC Planetary Gear Motor With Planetary Gearbox     motor electric	China ZD 32mm 42mm 52mm 62mm 72mm 82mm 12V 24V 48V 10W-300W Round Flange High Torque DC Brushless or Brush DC Planetary Gear Motor With Planetary Gearbox     motor electric
editor by czh 2023-03-24

China Diameter 36mm 12V 24V 48V 220V 310V Brushledd DC Planetary Gear Motor with Great quality

Solution Description

Diameter 36mm 12V 24V 48V 220V 310V Brushledd DC Planetary Equipment Motor    

1.Technical specifications:
one. Planet equipment motor dimension: From dia. 22mm to dia. 83mm
two. In shape for small dimensions large output electrical power gear.
3. The specifications can be developed in accordance to the customer’s requirements!
4. The motor have reduced sounds,prolonged life,higher torque.
five.  The motor can add encoder  
6.Typical programs: Laminator, Paper Shredder, Rotating Christmas Tree Stand, admirer, electric oven, grill. 
We also can change dc motor specifications and output shaft size in accordance to your unique prerequisite.
Welcome to purchase DC motor!

two.Production Circulation

3.Organization Data

 In latest ten several years, DERRY has been devoted to the manufacture of the motor products and the primary goods can be categorized into the subsequent series, particularly DC motor, DC equipment motor, AC motor, AC gear motor, Stepper motor, Stepper equipment motor, Servo motor and Linear actuator collection. 

Our motor items are widely applied in the fields of aerospace sector, automotive business, monetary tools, house equipment, industrial automation and robotics, medical products, office products, packing equipment and transmission sector, supplying clients dependable customized remedies for driving and controlling.

4.Our Companies

one). Basic Service:

Fast Reply

All enquiry or e mail be replied in 12 hrs, no hold off for your business.

Professional Group

Questions about items will be replied skillfully, specifically, best suggestions to you.

Limited Direct time

Sample or small get despatched in 7-15 days, bulk or customized order about thirty days.

Payment Option

T/T, Western Union,, L/C, etc, straightforward for your enterprise.

Just before cargo

Get pictures, deliver to clients for affirmation. Only verified, can be transported out.

Language Option

Apart from English, you can use your possess language by e-mail, then we can translate it.

 

2). Customization Service:

Motor specification(no-load speed , voltage, torque , diameter, sounds, life, testing) and shaft duration can be tailor-produced according to customer’s demands.

five.Deal & Shipping

 

 

US $69-168
/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4

###

Samples:
US$ 168/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Quick Reply

All enquiry or email be replied in 12 hours, no delay for your business.

Professional Team

Questions about products will be replied professionally, exactly, best advice to you.

Short Lead time

Sample or small order sent in 7-15 days, bulk or customized order about 30 days.

Payment Choice

T/T, Western Union,, L/C, etc, easy for your business.

Before shipment

Take photos, send to customers for confirmation. Only confirmed, can be shipped out.

Language Choice

Besides English, you can use your own language by email, then we can translate it.

US $69-168
/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4

###

Samples:
US$ 168/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Quick Reply

All enquiry or email be replied in 12 hours, no delay for your business.

Professional Team

Questions about products will be replied professionally, exactly, best advice to you.

Short Lead time

Sample or small order sent in 7-15 days, bulk or customized order about 30 days.

Payment Choice

T/T, Western Union,, L/C, etc, easy for your business.

Before shipment

Take photos, send to customers for confirmation. Only confirmed, can be shipped out.

Language Choice

Besides English, you can use your own language by email, then we can translate it.

Benefits of a Planetary Motor

Besides being one of the most efficient forms of a drive, a Planetary Motor also offers a great number of other benefits. These features enable it to create a vast range of gear reductions, as well as generate higher torques and torque density. Let’s take a closer look at the benefits this mechanism has to offer. To understand what makes it so appealing, we’ll explore the different types of planetary systems.
Motor

Solar gear

The solar gear on a planetary motor has two distinct advantages. It produces less noise and heat than a helical gear. Its compact footprint also minimizes noise. It can operate at high speeds without sacrificing efficiency. However, it must be maintained with constant care to operate efficiently. Solar gears can be easily damaged by water and other debris. Solar gears on planetary motors may need to be replaced over time.
A planetary gearbox is composed of a sun gear and two or more planetary ring and spur gears. The sun gear is the primary gear and is driven by the input shaft. The other two gears mesh with the sun gear and engage the stationary ring gear. The three gears are held together by a carrier, which sets the spacing. The output shaft then turns the planetary gears. This creates an output shaft that rotates.
Another advantage of planetary gears is that they can transfer higher torques while being compact. These advantages have led to the creation of solar gears. They can reduce the amount of energy consumed and produce more power. They also provide a longer service life. They are an excellent choice for solar-powered vehicles. But they must be installed by a certified solar energy company. And there are other advantages as well. When you install a solar gear on a planetary motor, the energy produced by the sun will be converted to useful energy.
A solar gear on a planetary motor uses a solar gear to transmit torque from the sun to the planet. This system works on the principle that the sun gear rotates at the same rate as the planet gears. The sun gear has a common design modulus of -Ns/Np. Hence, a 24-tooth sun gear equals a 3-1/2 planet gear ratio. When you consider the efficiency of solar gears on planetary motors, you will be able to determine whether the solar gears are more efficient.

Sun gear

The mechanical arrangement of a planetary motor comprises of two components: a ring gear and a sun gear. The ring gear is fixed to the motor’s output shaft, while the sun gear rolls around and orbits around it. The ring gear and sun gear are linked by a planetary carrier, and the torque they produce is distributed across their teeth. The planetary structure arrangement also reduces backlash, and is critical to achieve a quick start and stop cycle.
When the two planetary gears rotate independently, the sun gear will rotate counterclockwise and the ring-gear will turn in the same direction. The ring-gear assembly is mounted in a carrier. The carrier gear and sun gear are connected to each other by a shaft. The planetary gears and sun gear rotate around each other on the ring-gear carrier to reduce the speed of the output shaft. The planetary gear system can be multiplied or staged to obtain a higher reduction ratio.
A planetary gear motor mimics the planetary rotation system. The input shaft turns a central gear, known as the sun gear, while the planetary gears rotate around a stationary sun gear. The motor’s compact design allows it to be easily mounted to a vehicle, and its low weight makes it ideal for small vehicles. In addition to being highly efficient, a planetary gear motor also offers many other benefits.
A planetary gearbox uses a sun gear to provide torque to the other gears. The planet pinions mesh with an internal tooth ring gear to generate rotation. The carrier also acts as a hub between the input gear and output shaft. The output shaft combines these two components, giving a higher torque. There are three types of planetary gearboxes: the sun gear and a wheel drive planetary gearbox.
Motor

Planetary gear

A planetary motor gear works by distributing rotational force along a separating plate and a cylindrical shaft. A shock-absorbing device is included between the separating plate and cylindrical shaft. This depressed portion prevents abrasion wear and foreign particles from entering the device. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one another. The rotatable disc absorbs the impact.
Another benefit of a planetary motor gear is its efficiency. Planetary motor gears are highly efficient at transferring power, with 97% of the input energy being transferred to the output. They can also have high gear ratios, and offer low noise and backlash. This design also allows the planetary gearbox to work with electric motors. In addition, planetary gears also have a long service life. The efficiency of planetary gears is due in part to the large number of teeth.
Other benefits of a planetary motor gear include the ease of changing ratios, as well as the reduced safety stock. Unlike other gears, planetary gears don’t require special tools for changing ratios. They are used in numerous industries, and share parts across multiple sizes. This means that they are cost-effective to produce and require less safety stock. They can withstand high shock and wear, and are also compact. If you’re looking for a planetary motor gear, you’ve come to the right place.
The axial end surface of a planetary gear can be worn down by abrasion with a separating plate. In addition, foreign particles may enter the planetary gear device. These particles can damage the gears or even cause noise. As a result, you should check planetary gears for damage and wear. If you’re looking for a gear, make sure it has been thoroughly tested and installed by a professional.

Planetary gearbox

A planetary motor and gearbox are a common combination of electric and mechanical power sources. They share the load of rotation between multiple gear teeth to increase the torque capacity. This design is also more rigid, with low backlash that can be as low as one or two arc minutes. The advantages of a planetary gearmotor over a conventional electric motor include compact size, high efficiency, and less risk of gear failure. Planetary gear motors are also more reliable and durable than conventional electric motors.
A planetary gearbox is designed for a single stage of reduction, or a multiple-stage unit can be built with several individual cartridges. Gear ratios may also be selected according to user preference, either to face mount the output stage or to use a 5mm hex shaft. For multi-stage planetary gearboxes, there are a variety of different options available. These include high-efficiency planetary gearboxes that achieve a 98% efficiency at single reduction. In addition, they are noiseless, and reduce heat loss.
A planetary gearbox may be used to increase torque in a robot or other automated system. There are different types of planetary gear sets available, including gearboxes with sliding or rolling sections. When choosing a planetary gearset, consider the environment and other factors such as backlash, torque, and ratio. There are many advantages to a planetary gearbox and the benefits and drawbacks associated with it.
Planetary gearboxes are similar to those in a solar system. They feature a central sun gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure around a stationary sun gear. When the gears are engaged, they are connected by a carrier that is fixed to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors reduce the rotational speed of an armature by one or more times. The reduction ratio depends on the structure of the planetary gear device. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a circular pattern to turn the pinion 3. When the pinion rotates to the engagement position, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The result is that the engine cranks up.
Planetary gear motors are cylindrical in shape and are available in various power levels. They are typically made of steel or brass and contain multiple gears that share the load. These motors can handle massive power transfers. The planetary gear drive, on the other hand, requires more components, such as a sun’s gear and multiple planetary gears. Consequently, it may not be suitable for all types of applications. Therefore, the planetary gear drive is generally used for more complex machines.
Brush dusts from the electric motor may enter the planetary gear device and cause it to malfunction. In addition, abrasion wear on the separating plate can affect the gear engagement of the planetary gear device. If this occurs, the gears will not engage properly and may make noise. In order to prevent such a situation from occurring, it is important to regularly inspect planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors come in many different power levels and sizes. These motors are usually cylindrical in shape and are made of steel, brass, plastic, or a combination of both materials. A planetary gear motor can be used in applications where space is an issue. This motor also allows for low gearings in small spaces. The planetary gearing allows for large amounts of power transfer. The output shaft size is dependent on the gear ratio and the motor speed.

China Diameter 36mm 12V 24V 48V 220V 310V Brushledd DC Planetary Gear Motor     with Great qualityChina Diameter 36mm 12V 24V 48V 220V 310V Brushledd DC Planetary Gear Motor     with Great quality
editor by czh 2023-01-18

China 80mm 1000rpm High Speed 400W Electric 48V BLDC Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine manufacturer

Item Description

BG 80BL DC Brushless Motor 
Environmental Situations -20ºC~50ºC
Insulation Clase B
Protection course IP44
Sound ≤65dB
Number of Poles/ phases eight/3
Lifespan >5000h

 

Electrical Technical specs
Product RATED LOAD NO LOAD   STALL
Voltage   Electricity Velocity Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 80BL01 forty eight 220 3000 .seven 5.five 4000 1.37   2.1   sixteen.five
BG 80BL02 310 440 6000 .7 one.7 8000 .four 2.1 five.one
BG 80BL03 forty eight four hundred 3000 1.27 10 4000 two.5 thirty thirty
We can also personalize items according to buyer demands.

 

 Planetary Equipment Motor Specialized Knowledge-BG
Ratio three 6  10  24 36 sixty four ninety six 216
NO-load velocity 1333 666 250 166 111 62.five 41 18
Rated pace(rpm) a thousand 500 187 125 83 forty six 31 13
Rated torque(N.m) 2.7 five.4 eight.five twenty.4 thirty.6 forty eight 70 70

Set up in 1994, HangZhou BG Motor Factory is a professional manufacturer of brushless DC motors, brushed DC motors, planetary equipment motors, worm gear motors, Universal motors and AC motors. We have a plant region of 6000 sq. meters, multiple patent certificates, and we have the impartial design and style and growth capabilities and powerful technical drive, with an yearly output of far more than 1 million units. Considering that the starting of its establishment, BG motor has concentrated on the all round resolution of motors. We manufacture and style motors, give professional custom-made solutions, respond speedily to consumer wants, and actively support clients to remedy troubles. Our motor products are exported to 20 countries, which includes the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea and many others.
Our founder, Mr. Solar, has much more than 40 several years of encounter in motor technologies, and our other engineers also have much more than 15 several years of encounter, and sixty% of our workers have much more than 10 years of experience, and we can assure you that the high quality of our motors is prime notch.
The merchandise protect AGV, underwater robots, robots, stitching device sector, vehicles, healthcare tools, computerized doors, lifting gear, industrial gear and have a wide selection of applications.
We attempt for CZPT in the quality of every single solution, and we are only a small and refined company.
Our eyesight: Travel the globe ahead and make existence better!

Q:1.What variety of motors can you provide?

A:At current, we largely produce brushless DC motors, brush DC motors, AC motors, Universal Motors the electricity of the motor is significantly less than 5000W, and the diameter of the motor is not much more than 200mm

Q:2.Can you deliver me a cost list?

A:For all of our motors, they are custom-made dependent on different demands like life time, noise,voltage,and shaft and so forth. The price tag also differs according to annual amount. So it’s actually tough for us to give a price list. If you can share your thorough specifications and annual quantity, we will see what offer you we can supply.

Q:3.Can l get some samples?

A:It depends. If only a couple of samples for personalized use or substitute, I am concerned it’s going to be hard for us to offer due to the fact all of our motors are custom produced and no inventory offered if there are no even more requirements. If just sample tests ahead of the formal purchase and our MOQ,price and other phrases are acceptable,we’d really like to supply samples.

Q4:Can you provide OEM or ODM services?

A:Indeed,OEM and ODM are the two available, we have the skilled R&D dept which can provide professional options for you.

Q5:Can l go to your manufacturing unit just before we location an purchase?

A:welcome to go to our manufacturing unit,dress in every happy if we have the likelihood to know each and every other far more.

Q:6.What’s the guide time for a typical get?

A:For orders, the regular guide time is 15-20 times and this time can be shorter or for a longer time primarily based on the different model,time period and amount.

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

BG 80BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

###

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 80BL01 48 220 3000 0.7 5.5 4000 1.37   2.1   16.5
BG 80BL02 310 440 6000 0.7 1.7 8000 0.4 2.1 5.1
BG 80BL03 48 400 3000 1.27 10 4000 2.5 30 30
We can also customize products according to customer requirements.

###

 Planetary Gear Motor Technical Data-BG
Ratio 3 6  10  24 36 64 96 216
NO-load speed 1333 666 250 166 111 62.5 41 18
Rated speed(rpm) 1000 500 187 125 83 46 31 13
Rated torque(N.m) 2.7 5.4 8.5 20.4 30.6 48 70 70
Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

BG 80BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

###

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 80BL01 48 220 3000 0.7 5.5 4000 1.37   2.1   16.5
BG 80BL02 310 440 6000 0.7 1.7 8000 0.4 2.1 5.1
BG 80BL03 48 400 3000 1.27 10 4000 2.5 30 30
We can also customize products according to customer requirements.

###

 Planetary Gear Motor Technical Data-BG
Ratio 3 6  10  24 36 64 96 216
NO-load speed 1333 666 250 166 111 62.5 41 18
Rated speed(rpm) 1000 500 187 125 83 46 31 13
Rated torque(N.m) 2.7 5.4 8.5 20.4 30.6 48 70 70

The Basics of a Gear Motor

The basic mechanism behind the gear motor is the principle of conservation of angular momentum. The smaller the gear, the more RPM it covers and the larger the gear, the more torque it produces. The ratio of angular velocity of two gears is called the gear ratio. Moreover, the same principle applies to multiple gears. This means that the direction of rotation of each adjacent gear is always the opposite of the one it is attached to.
Motor

Induction worm gear motor

If you’re looking for an electric motor that can deliver high torque, an Induction worm gear motor might be the right choice. This type of motor utilizes a worm gear attached to the motor to rotate a main gear. Because this type of motor is more efficient than other types of motors, it can be used in applications requiring massive reduction ratios, as it is able to provide more torque at a lower speed.
The worm gear motor is designed with a spiral shaft that is set into splines in another gear. The speed at which the worm gear rotates is dependent on the torque produced by the main gear. Induction worm gear motors are best suited for use in low-voltage applications such as electric cars, renewable energy systems, and industrial equipment. They come with a wide range of power-supply options, including twelve-volt, 24-volt, and 36-volt AC power supplies.
These types of motors can be used in many industrial settings, including elevators, airport equipment, food packaging facilities, and more. They also produce less noise than other types of motors, which makes them a popular choice for manufacturers with limited space. The efficiency of worm gearmotors makes them an excellent choice for applications where noise is an issue. Induction worm gear motors can be compact and extremely high-torque.
While the Induction worm gear motor is most widely used in industrial applications, there are other kinds of gearmotors available. Some types are more efficient than others, and some are more expensive than others. For your application, choosing the correct motor and gearbox combination is crucial to achieving the desired result. You’ll find that the Induction worm gear motor is an excellent choice for many applications. The benefits of an Induction worm gear motor can’t be overstated.
The DC gear motor is an excellent choice for high-end industrial applications. This type of gearmotor is smaller and lighter than a standard AC motor and can deliver up to 200 watts of torque. A gear ratio of three to two can be found in these motors, which makes them ideal for a wide range of applications. A high-quality DC gear motor is a great choice for many industrial applications, as they can be highly efficient and provide a high level of reliability.
Electric gear motors are a versatile and widely used type of electric motor. Nevertheless, there are some applications that don’t benefit from them, such as applications with high shaft speed and low torque. Applications such as fan motors, pump and scanning machines are examples of such high-speed and high-torque demands. The most important consideration when choosing a gearmotor is its efficiency. Choosing the right size will ensure the motor runs efficiently at peak efficiency and will last for years.
Motor

Parallel shaft helical gear motor

The FC series parallel shaft helical gearmotor is a compact, lightweight, and high-performance unit that utilizes a parallel shaft structure. Its compact design is complemented by high transmission efficiency and high carrying capacity. The motor’s material is 20CrMnTi alloy steel. The unit comes with either a flanged input or bolt-on feet for installation. Its low noise and compact design make it an ideal choice for a variety of applications.
The helical gears are usually arranged in two rows of one another. Each row contains one or more rows of teeth. The parallel row has the teeth in a helical pattern, while the helical rows are lined up parallelly. In addition to this, the cross helical gears have a point contact design and do not overlap. They can be either parallel or crossed. The helical gear motors can have any number of helical pairs, each with a different pitch circle diameter.
The benefits of the Parallel Shaft Helical Gearbox include high temperature and pressure handling. It is produced by skilled professionals using cutting-edge technology, and is widely recognized for its high performance. It is available in a range of technical specifications and is custom-made to suit individual requirements. These gearboxes are durable and low-noise and feature high reliability. You can expect to save up to 40% of your energy by using them.
The parallel shaft helical gear motors are designed to reduce the speed of a rotating part. The nodular cast iron housing helps make the unit robust in difficult environments, while the precision-machined gears provide quiet, vibration-free operation. These motors are available in double reduction, triple reduction, and quadruple reduction. The capacity ranges from 0.12 kW to 45 kW. You can choose from a wide variety of capacities, depending on the size of your gearing needs.
The SEW-EURODRIVE parallel shaft helical gearmotor is a convenient solution for space-constrained applications. The machine’s modular design allows for easy mounting and a wide range of ambient temperatures. They are ideal for a variety of mechanical applications, including conveyors, augers, and more. If you want a small footprint, the SEW-EURODRIVE parallel shaft helical gear motor is the best solution for you.
The parallel shaft helical gears are advantageous for both high and low speed applications. Parallel helical gears are also suitable for low speed and low duty applications. A good example of a cross-helix gear is the oil pump of an internal combustion engine. Both types of helical gears are highly reliable and offer vibration-free operation. They are more costly than conventional gear motors, but offer more durability and efficiency.
Motor

Helical gear unit

This helical gear unit is designed to operate under a variety of demanding conditions and can be used in a wide range of applications. Designed for long life and high torque density, this gear unit is available in a variety of torques and gear ratios. Its design and construction make it compatible with a wide range of critical mechanical systems. Common applications include conveyors, material handling, steel mills, and paper mills.
Designed for high-performance applications, the Heidrive helical gear unit provides superior performance and value. Its innovative design allows it to function well under a wide range of operating conditions and is highly resistant to damage. These gear motors can be easily combined with a helical gear unit. Their combined power output is 100 Nm, and they have a high efficiency of up to 90%. For more information about the helical gear motor, contact a Heidrive representative.
A helical gear unit can be classified by its reference section in the standard plane or the turning plane. Its center gap is the same as that of a spur gear, and its number of teeth is the same. In addition to this, the helical gear has a low axial thrust, which is another important characteristic. The helical gear unit is more efficient at transferring torque than a spur gear, and it is quieter, too.
These units are designed to handle large loads. Whether you are using them for conveyors, augers, or for any other application that involves high-speed motion, a helical gear unit will deliver maximum performance. A helical gear unit from Flender can handle 400,000 tasks with a high degree of reliability. Its high efficiency and high resistance to load ensures high plant availability. These gear motors are available in a variety of sizes, from single-speed to multi-speed.
PEC geared motors benefit from decades of design experience and high quality materials. They are robust, quiet, and offer excellent performance. They are available in multiple configurations and are dimensionally interchangeable with other major brands. The gear motors are manufactured as modular kits to minimize inventory. They can be fitted with additional components, such as backstops and fans. This makes it easy to customize your gear motors and save money while reducing costs.
Another type of helical gears is the double helical gear. The double helical gear unit has two helical faces with a gap between them. They are better for enclosed gear systems as they provide greater tooth overlap and smoother performance. Compared to double helical gears, they are smaller and more flexible than the Herringbone type. So, if you’re looking for a gear motor, a helical gear unit may be perfect for you.

China 80mm 1000rpm High Speed 400W Electric 48V BLDC Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine     manufacturer China 80mm 1000rpm High Speed 400W Electric 48V BLDC Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine     manufacturer
editor by czh 2023-01-09

China Od 36mm 12V 24V 48V 220V 310V Brushledd DC Planetary Gear Motor motor brushes

Solution Description

Od 36mm 12V 24V 48V 220V 310V Brushledd DC Planetary Equipment Motor    

1.Technical specs:
one. Planet equipment motor dimensions: From dia. 22mm to dia. 83mm
2. In shape for small dimension huge output electrical power gear.
3. The specifications can be developed in accordance to the customer’s specifications!
4. The motor have reduced sounds,extended existence,substantial torque.
5.  The motor can insert encoder  
6.Typical applications: Laminator, Paper Shredder, Rotating Xmas Tree Stand, enthusiast, electric powered oven, grill. 
We also can alter dc motor specifications and output shaft dimensions according to your special prerequisite.
Welcome to get DC motor!

two.Creation Circulation

three.Organization Information

 In modern ten many years, DERRY has been committed to the manufacture of the motor merchandise and the major merchandise can be classified into the pursuing collection, namely DC motor, DC equipment motor, AC motor, AC equipment motor, Stepper motor, Stepper equipment motor, Servo motor and Linear actuator series. 

Our motor merchandise are broadly used in the fields of aerospace business, automotive market, economic gear, family appliance, industrial automation and robotics, medical tools, office gear, packing equipment and transmission sector, giving consumers dependable customized remedies for driving and managing.

4.Our Companies

one). General Service:

Quick Reply

All enquiry or e-mail be replied in twelve hrs, no delay for your organization.

Specialist Team

Concerns about goods will be replied skillfully, exactly, best advice to you.

Brief Direct time

Sample or modest purchase sent in 7-fifteen days, bulk or personalized purchase about 30 days.

Payment Choice

T/T, Western Union,, L/C, and so on, effortless for your enterprise.

Ahead of cargo

Just take pictures, send out to buyers for affirmation. Only verified, can be shipped out.

Language Option

In addition to English, you can use your personal language by e-mail, then we can translate it.

 

two). Customization Provider:

Motor specification(no-load pace , voltage, torque , diameter, sound, lifestyle, screening) and shaft length can be tailor-made in accordance to customer’s needs.

5.Bundle & Shipping

 

 

US $69-168
/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4

###

Samples:
US$ 168/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Quick Reply

All enquiry or email be replied in 12 hours, no delay for your business.

Professional Team

Questions about products will be replied professionally, exactly, best advice to you.

Short Lead time

Sample or small order sent in 7-15 days, bulk or customized order about 30 days.

Payment Choice

T/T, Western Union,, L/C, etc, easy for your business.

Before shipment

Take photos, send to customers for confirmation. Only confirmed, can be shipped out.

Language Choice

Besides English, you can use your own language by email, then we can translate it.

US $69-168
/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4

###

Samples:
US$ 168/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

Quick Reply

All enquiry or email be replied in 12 hours, no delay for your business.

Professional Team

Questions about products will be replied professionally, exactly, best advice to you.

Short Lead time

Sample or small order sent in 7-15 days, bulk or customized order about 30 days.

Payment Choice

T/T, Western Union,, L/C, etc, easy for your business.

Before shipment

Take photos, send to customers for confirmation. Only confirmed, can be shipped out.

Language Choice

Besides English, you can use your own language by email, then we can translate it.

The Basics of a Planetary Motor

A Planetary Motor is a type of gearmotor that uses multiple planetary gears to deliver torque. This system minimizes the chances of failure of individual gears and increases output capacity. Compared to the planetary motor, the spur gear motor is less complex and less expensive. However, a spur gear motor is generally more suitable for applications requiring low torque. This is because each gear is responsible for the entire load, limiting its torque.

Self-centering planetary gears

This self-centering mechanism for a planetary motor is based on a helical arrangement. The helical structure involves a sun-planet, with its crown and slope modified. The gears are mounted on a ring and share the load evenly. The helical arrangement can be either self-centering or self-resonant. This method is suited for both applications.
A helical planetary gear transmission is illustrated in FIG. 1. A helical configuration includes an output shaft 18 and a sun gear 18. The drive shaft extends through an opening in the cover to engage drive pins on the planet carriers. The drive shaft of the planetary gears can be fixed to the helical arrangement or can be removable. The transmission system is symmetrical, allowing the output shaft of the planetary motor to rotate radially in response to the forces acting on the planet gears.
A flexible pin can improve load sharing. This modification may decrease the face load distribution, but increases the (K_Hbeta) parameter. This effect affects the gear rating and life. It is important to understand the effects of flexible pins. It is worth noting that there are several other disadvantages of flexible pins in helical PGSs. The benefits of flexible pins are discussed below.
Using self-centering planetary gears for a helical planetary motor is essential for symmetrical force distribution. These gears ensure the symmetry of force distribution. They can also be used for self-centering applications. Self-centering planetary gears also guarantee the proper force distribution. They are used to drive a planetary motor. The gearhead is made of a ring gear, and the output shaft is supported by two ball bearings. Self-centering planetary gears can handle a high torque input, and can be suited for many applications.
To solve for a planetary gear mechanism, you need to find its pitch curve. The first step is to find the radius of the internal gear ring. A noncircular planetary gear mechanism should be able to satisfy constraints that can be complex and nonlinear. Using a computer, you can solve for these constraints by analyzing the profile of the planetary wheel’s tooth curve.
Motor

High torque

Compared to the conventional planetary motors, high-torque planetary motors have a higher output torque and better transmission efficiency. The high-torque planetary motors are designed to withstand large loads and are used in many types of applications, such as medical equipment and miniature consumer electronics. Their compact design makes them suitable for small space-saving applications. In addition, these motors are designed for high-speed operation.
They come with a variety of shaft configurations and have a wide range of price-performance ratios. The FAULHABER planetary gearboxes are made of plastic, resulting in a good price-performance ratio. In addition, plastic input stage gears are used in applications requiring high torques, and steel input stage gears are available for higher speeds. For difficult operating conditions, modified lubrication is available.
Various planetary gear motors are available in different sizes and power levels. Generally, planetary gear motors are made of steel, brass, or plastic, though some use plastic for their gears. Steel-cut gears are the most durable, and are ideal for applications that require a high amount of torque. Similarly, nickel-steel gears are more lubricated and can withstand a high amount of wear.
The output torque of a high-torque planetary gearbox depends on its rated input speed. Industrial-grade high-torque planetary gearboxes are capable of up to 18000 RPM. Their output torque is not higher than 2000 nm. They are also used in machines where a planet is decelerating. Their working temperature ranges between 25 and 100 degrees Celsius. For best results, it is best to choose the right size for the application.
A high-torque planetary gearbox is the most suitable type of high-torque planetary motor. It is important to determine the deceleration ratio before buying one. If there is no product catalog that matches your servo motor, consider buying a close-fitting high-torque planetary gearbox. There are also high-torque planetary gearboxes available for custom-made applications.
Motor

High efficiency

A planetary gearbox is a type of mechanical device that is used for high-torque transmission. This gearbox is made of multiple pairs of gears. Large gears on the output shaft mesh with small gears on the input shaft. The ratio between the big and small gear teeth determines the transmittable torque. High-efficiency planetary gearheads are available for linear motion, axial loads, and sterilizable applications.
The AG2400 high-end gear unit series is ideally matched to Beckhoff’s extensive line of servomotors and gearboxes. Its single-stage and multi-stage transmission ratios are highly flexible and can be matched to different robot types. Its modified lubrication helps it operate in difficult operating conditions. These high-performance gear units are available in a wide range of sizes.
A planetary gear motor can be made of steel, nickel-steel, or brass. In addition to steel, some models use plastic. The planetary gears share work between multiple gears, making it easy to transfer high amounts of power without putting a lot of stress on the gears. The gears in a planetary gear motor are held together by a movable arm. High-efficiency planetary gear motors are more efficient than traditional gearmotors.
While a planetary gear motor can generate torque, it is more efficient and cheaper to produce. The planetary gear system is designed with all gears operating in synchrony, minimizing the chance of a single gear failure. The efficiency of a planetary gearmotor makes it a popular choice for high-torque applications. This type of motor is suitable for many applications, and is less expensive than a standard geared motor.
The planetary gearbox is a combination of a planetary type gearbox and a DC motor. The planetary gearbox is compact, versatile, and efficient, and can be used in a wide range of industrial environments. The planetary gearbox with an HN210 DC motor is used in a 22mm OD, PPH, and ph configuration with voltage operating between 6V and 24V. It is available in many configurations and can be custom-made to meet your application requirements.
Motor

High cost

In general, planetary gearmotors are more expensive than other configurations of gearmotors. This is due to the complexity of their design, which involves the use of a central sun gear and a set of planetary gears which mesh with each other. The entire assembly is enclosed in a larger internal tooth gear. However, planetary motors are more effective for higher load requirements. The cost of planetary motors varies depending on the number of gears and the number of planetary gears in the system.
If you want to build a planetary gearbox, you can purchase a gearbox for the motor. These gearboxes are often available with several ratios, and you can use any one to create a custom ratio. The cost of a gearbox depends on how much power you want to move with the gearbox, and how much gear ratio you need. You can even contact your local FRC team to purchase a gearbox for the motor.
Gearboxes play a major role in determining the efficiency of a planetary gearmotor. The output shafts used for this type of motor are usually made of steel or nickel-steel, while those used in planetary gearboxes are made from brass or plastic. The former is the most durable and is best for applications that require high torque. The latter, however, is more absorbent and is better at holding lubricant.
Using a planetary gearbox will allow you to reduce the input power required for the stepper motor. However, this is not without its downsides. A planetary gearbox can also be replaced with a spare part. A planetary gearbox is inexpensive, and its spare parts are inexpensive. A planetary gearbox has low cost compared to a planetary motor. Its advantages make it more desirable in certain applications.
Another advantage of a planetary gear unit is the ability to handle ultra-low speeds. Using a planetary gearbox allows stepper motors to avoid resonance zones, which can cause them to crawl. In addition, the planetary gear unit allows for safe and efficient cleaning. So, whether you’re considering a planetary gear unit for a particular application, these gear units can help you get exactly what you need.

China Od 36mm 12V 24V 48V 220V 310V Brushledd DC Planetary Gear Motor     motor brushesChina Od 36mm 12V 24V 48V 220V 310V Brushledd DC Planetary Gear Motor     motor brushes
editor by czh 2022-12-29

China China 1000rpm High Speed 400W Electric 48V Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine with Best Sales

Product Description

BG 80BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

 

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 80BL01 48 220 3000 0.7 5.5 4000 1.37   2.1   16.5
BG 80BL02 310 440 6000 0.7 1.7 8000 0.4 2.1 5.1
BG 80BL03 48 400 3000 1.27 10 4000 2.5 30 30
We can also customize products according to customer requirements.

 

 Planetary Gear Motor Technical Data-BG
Ratio 3 6  10  24 36 64 96 216
NO-load speed 1333 666 250 166 111 62.5 41 18
Rated speed(rpm) 1000 500 187 125 83 46 31 13
Rated torque(N.m) 2.7 5.4 8.5 20.4 30.6 48 70 70

Established in 1994, HangZhou BG Motor Factory is a professional manufacturer of brushless DC motors, brushed DC motors, planetary gear motors, worm gear motors, Universal motors and AC motors. We have a plant area of 6000 square meters, multiple patent certificates, and we have the independent design and development capabilities and strong technical force, with an annual output of more than 1 million units. Since the beginning of its establishment, BG motor has focused on the overall solution of motors. We manufacture and design motors, provide professional customized services, respond quickly to customer needs, and actively help customers to solve problems. Our motor products are exported to 20 countries, including the United States, Germany, Italy, the United Kingdom, Poland, Slovenia, Switzerland, Sweden, Singapore, South Korea etc.
Our founder, Mr. Sun, has more than 40 years of experience in motor technology, and our other engineers also have more than 15 years of experience, and 60% of our staff have more than 10 years of experience, and we can assure you that the quality of our motors is top notch.
The products cover AGV, underwater robots, robots, sewing machine industry, automobiles, medical equipment, automatic doors, lifting equipment, industrial equipment and have a wide range of applications.
We strive for CZPT in the quality of each product, and we are only a small and sophisticated manufacturer.
Our vision: Drive the world forward and make life better!

Q:1.What kind of motors can you provide?

A:At present, we mainly produce brushless DC motors, brush DC motors, AC motors, Universal Motors; the power of the motor is less than 5000W, and the diameter of the motor is not more than 200mm;

Q:2.Can you send me a price list?

A:For all of our motors, they are customized based on different requirements like lifetime, noise,voltage,and shaft etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

Q:3.Can l get some samples?

A:It depends. If only a few samples for personal use or replacement, I am afraid it’ll be difficult for us to provide because all of our motors are custom made and no stock available if there are no further needs. If just sample testing before the official order and our MOQ,price and other terms are acceptable,we’d love to provide samples.

Q4:Can you provide OEM or ODM service?

A:Yes,OEM and ODM are both available, we have the professional R&D dept which can provide professional solutions for you.

Q5:Can l visit your factory before we place an order?

A:welcome to visit our factory,wear every pleased if we have the chance to know each other more.

Q:6.What’s the lead time for a regular order?

A:For orders, the standard lead time is 15-20 days and this time can be shorter or longer based on the different model,period and quantity.

Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

BG 80BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

###

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 80BL01 48 220 3000 0.7 5.5 4000 1.37   2.1   16.5
BG 80BL02 310 440 6000 0.7 1.7 8000 0.4 2.1 5.1
BG 80BL03 48 400 3000 1.27 10 4000 2.5 30 30
We can also customize products according to customer requirements.

###

 Planetary Gear Motor Technical Data-BG
Ratio 3 6  10  24 36 64 96 216
NO-load speed 1333 666 250 166 111 62.5 41 18
Rated speed(rpm) 1000 500 187 125 83 46 31 13
Rated torque(N.m) 2.7 5.4 8.5 20.4 30.6 48 70 70
Application: Universal, Industrial, Household Appliances, Car, Power Tools, Robot Arm
Operating Speed: Low Speed
Excitation Mode: DC
Function: Driving
Casing Protection: Closed Type
Number of Poles: Can Be Choosen

###

Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

BG 80BL DC Brushless Motor 
Environmental Conditions -20ºC~50ºC
Insulation Clase B
Protection class IP44
Noise ≤65dB
Number of Poles/ phases 8/3
Lifespan >5000h

###

Electrical Specifications
Model RATED LOAD NO LOAD   STALL
Voltage   Power Speed Torque  Current    Speed    Current    Torque   Current 
V W rpm N.m A rpm A   N.m   A  
BG 80BL01 48 220 3000 0.7 5.5 4000 1.37   2.1   16.5
BG 80BL02 310 440 6000 0.7 1.7 8000 0.4 2.1 5.1
BG 80BL03 48 400 3000 1.27 10 4000 2.5 30 30
We can also customize products according to customer requirements.

###

 Planetary Gear Motor Technical Data-BG
Ratio 3 6  10  24 36 64 96 216
NO-load speed 1333 666 250 166 111 62.5 41 18
Rated speed(rpm) 1000 500 187 125 83 46 31 13
Rated torque(N.m) 2.7 5.4 8.5 20.4 30.6 48 70 70

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.
Motor

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China China 1000rpm High Speed 400W Electric 48V Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine     with Best SalesChina China 1000rpm High Speed 400W Electric 48V Brushless DC Planetary Gear Motor for CNC Milling and Drilling Machine     with Best Sales
editor by czh 2022-12-01

China 24V 48V Low Speed High Torque DC Motor DC Planetary Gear Motor High Torque DC Motor with Planetary Gearbox Gear Ratio: 1: 36 motor efficiency

Product Description

Product Features

 A DC Motor whose poles are made of Permanent Magnets is known as Permanent Magnet DC (PMDC) Motor. The magnets are radially magnetized and are mounted on the inner periphery of the cylindrical steel stator. The stator of the motor serves as  a return path for the magnetic flux. The rotor has a DC armature, with commutator segments and brushes.

Applications of the Permanent Magnet DC Motor

The PMDC motors are used in various applications ranging from fractions to several horsepower.  They are developed up to about 200 kW for use in various industries. The following applications are given below.

PMDC motors are mainly used in automobiles to operate windshield wipers and washers, to raise the lower windows, to drive blowers for heaters and air conditioners etc.

They are also used in computer drives.high torque dc planetary gear motor

These types of motors are also used in toy industries.

PMDC motors are used in electric toothbrushes, portable vacuum cleaners, food mixers.dc high torque geared motor

Used in a portable electric tool such as drilling machines, hedge trimmers etc.

Advantages of the Permanent Magnet DC Motor

Following are the advantages of the PMDC Motor.

They are smaller in size.24v dc motor low rpm

For smaller rating Permanent Magnet reduces the manufacturing cost and thus PMDC motor are cheaper.

As these motors do not require field windings, they do not have field circuit copper losses. This increases their efficiency.
 

Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
55ZYT01 63.7 3000 20 24 1.5 200
55ZYT02 63.7 3000 20 27 1.3 200
55ZYT03 63.7 3000 20 48 0.7 200
55ZYT04 63.7 3000 20 110 0.34 200
552YT05 55.7 6000 35 24 2.5 300
55ZYT06 55.7 6000 35 27 2.2 300
55ZYT07 55.7 6000 35 48 1.3 300
55ZYT08 55.7 6000 35 110 0.54 300
55ZYT09 78 2500 20.4 12 3.2 150
55ZYT10 63.7 3600 24 110 0.4 200
55ZYT51 92.3 3000 29 24 1.7 200
55ZYT52 92.3 3000 29 27 1.8 200
55ZYT53 92.3 3000 29 48 1.1 200
55ZYT54 92.3 3000 29 110 0.46 200
55ZYT55 79.6 6000 50 24 3.45 300
55ZYT56 79.6 6000 50 27 3.1 300
55ZYT57 79.6 6000 50 48 1.74 300
55ZYT58 79.6 6000 50 110 0.74 300
55ZYT59 92.3 1500 15 12 1.7 200
55ZYT60 79.6 3000 29 12 3.45 300
55ZYT61 76.4 5000 40 24 2.5 250
55ZYT63 127.4 1500 20 24 1.25 100
55ZYT64 95 3000 30 220 0.25 200
55ZYT65 89.2 7500 70 110 1.0 400
552YT66 110.8 2500 29 110 0.45 150
55ZYT68 69.6 5500 40 36 1.7 250
55ZYT72 95.5 2500 25 24 1.7 150
55ZYT76 92.3 2000 19 110 0.27 100
55ZYT105 108.2 7500 85 110 1.2 400
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
70ZYT01 159.2 3000 50 24 3.2 200
70ZYT02 159.2 3000 50 27 2.9 200
70ZYT03 159.2 3000 50 48 1.5 200
10ZYT04 159.2 3000 50 110 0.7 200
70ZYT05 135.4 6000 85 24 5.2 300
70ZYT06 135.4 6000 85 27 4.8 300
70ZYT07 135.4 6000 85 48 2.6 300
70ZYT08 135.4 6000 85 110 1.1 300
70ZYT13 151.9 2200 35 90 0.6 150
70ZYT14 152.9 2500 40 180 0.35 150
70ZYT16 191 2000 40 24 2.3 100
70ZYT21 95.5 3000 30 220 0.2 200
70ZYT51 223 3000 70 24 4.3 200
70ZYT52 223 3000 70 27 3.8 200
70ZYT53 223 3000 70 48 2.2 200
70ZYT54 223 3000 70 110 0.95 200
70ZYT55 191.1 6000 120 24 7.5 300
70ZYT56 191.1 6000 120 27 6.6 300
70ZYT57 191.1 6000 120 48 3.8 300
70ZYT58 191.1 6000 120 220 0.8 300
70ZYT59 223 1500 35 12 4.3 200
70ZYT60 238.8 4000 100 110 1.3 200
70ZYT61 191.1 6000 120 90 1.8 300
70ZYT76 191.1 2500 50 24 3 150
70ZYT77 318.5 1500 50 48 1.6 100
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
90ZYT01 323 1500 50 110 0.66 100
90ZYT02 323 1500 50 220 0.33 100
90ZYT03 294 3000 92 110 1.2 200
90ZYT04 294 3000 92 220 0.6 200
9OZYTO5 294 3000 92 24 6.1 200
90ZYT51 510 1500 80 110 1.1 100
90ZYT52 510 1500 80 220 0.55 100
90ZYT53 480 3000 150 110 2.0 200
90ZYT54 480 3000 150 220 1.0 200
90ZYT55 510 1500 80 12/24 10/5.0 100
9OZYT101 796 1500 125 110 1.6 100
90ZYT102 796 1500 125 220 0.8 100
90ZYT103 733 3000 230 110 2.8 200
9OZYT104 733 3000 230 220 1.5 200
9OZYT105 733 3000 230 24 13.5 200
90ZYT106 733 1500 125 12/24 13/6.5 100
90ZYT107 733 1300 100 36 4 100
9OZYT108 733 3000 250 48 6.5 200
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
110ZYT01 784 1500 123 110 1.8 100
110ZYT02 784 1500 123 220 0.9 100
110ZYT03 637 3000 200 110 2.8 200
110ZYT04 637 3000 200 220 1.4 200
110ZYT05 637 3000 200 24 13 200
110ZYT51 1177 1500 185 110 2.5 100
110ZYT52 1177 1500 185 220 1.25 100
110ZYT53 980 3000 308 110 4.0 200
110ZYT54 980 3000 308 220 2.0 200
110ZYT55 980 3000 308 24 16.5 200
110ZYT101 1560 1500 245 110 3.0 100
110ZYT102 1560 1500 245 220 1.5 100
110ZYT103 1274 3000 400 110 4.8 200
110ZYT104 1274 3000 400 220 2.4 200
110ZYT105 1274 3000 400 24 22.5 200
110ZYT106 1274 1500 245 12/24 24/12 100
110ZYT151 2390 1500 375 110 4.5 100
110ZYT152 2390 1500 375 220 2.3 100
110ZYT153 2230 3000 700 110 8.5 200
110ZYT154 2230 3000 700 220 4.2 200
110ZYT155 2230 3000 700 24 45 200
110ZYT156 2230 1500 375 12/24 44/22 100
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
1302YT01 2548 1500 400 110 4.8 100
130ZYT02 2548 1500 400 220 2.4 100
130ZYT03 2548 3000 800 110 9 200
130ZYT04 2548 3000 800 220 4.5 200
130ZYT05 3185 1500 500 24 28 100
130ZYT51 3185 1500 500 110 5.8 100
130ZYT52 3185 1500 500 220 2.9 100
130ZYT53 3185 3000 1000 110 11 200
130ZYT54 3185 3000 1000 220 5.5 200
130ZYT55 3185 3000 1000 24 50 200
130ZYT56 3185 1500 500 24 25 100
130ZYT101 3822 1500 600 110 7 01
130ZYT102 3822 1500 600 220 3.5 100
130ZYT103 3822 3000 1200 110 13 200
130ZYT104 3822 3000 1200 220 6.5 200
130ZYT105 3822 3000 1200 24 55 200
130ZYT106 3822 1500 600 24 30 100
130ZYT156 4775 1500 750 24 35 100
130ZYT157 4775 3000 1500 24 70 100
130ZYT158 6366 1500 1000 24 50 200

        Motor production workshop and equipment

Shipping & Packaging

 

US $130
/ Piece
|
1 Piece

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Function: Driving

###

Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
55ZYT01 63.7 3000 20 24 1.5 200
55ZYT02 63.7 3000 20 27 1.3 200
55ZYT03 63.7 3000 20 48 0.7 200
55ZYT04 63.7 3000 20 110 0.34 200
552YT05 55.7 6000 35 24 2.5 300
55ZYT06 55.7 6000 35 27 2.2 300
55ZYT07 55.7 6000 35 48 1.3 300
55ZYT08 55.7 6000 35 110 0.54 300
55ZYT09 78 2500 20.4 12 3.2 150
55ZYT10 63.7 3600 24 110 0.4 200
55ZYT51 92.3 3000 29 24 1.7 200
55ZYT52 92.3 3000 29 27 1.8 200
55ZYT53 92.3 3000 29 48 1.1 200
55ZYT54 92.3 3000 29 110 0.46 200
55ZYT55 79.6 6000 50 24 3.45 300
55ZYT56 79.6 6000 50 27 3.1 300
55ZYT57 79.6 6000 50 48 1.74 300
55ZYT58 79.6 6000 50 110 0.74 300
55ZYT59 92.3 1500 15 12 1.7 200
55ZYT60 79.6 3000 29 12 3.45 300
55ZYT61 76.4 5000 40 24 2.5 250
55ZYT63 127.4 1500 20 24 1.25 100
55ZYT64 95 3000 30 220 0.25 200
55ZYT65 89.2 7500 70 110 1.0 400
552YT66 110.8 2500 29 110 0.45 150
55ZYT68 69.6 5500 40 36 1.7 250
55ZYT72 95.5 2500 25 24 1.7 150
55ZYT76 92.3 2000 19 110 0.27 100
55ZYT105 108.2 7500 85 110 1.2 400
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
70ZYT01 159.2 3000 50 24 3.2 200
70ZYT02 159.2 3000 50 27 2.9 200
70ZYT03 159.2 3000 50 48 1.5 200
10ZYT04 159.2 3000 50 110 0.7 200
70ZYT05 135.4 6000 85 24 5.2 300
70ZYT06 135.4 6000 85 27 4.8 300
70ZYT07 135.4 6000 85 48 2.6 300
70ZYT08 135.4 6000 85 110 1.1 300
70ZYT13 151.9 2200 35 90 0.6 150
70ZYT14 152.9 2500 40 180 0.35 150
70ZYT16 191 2000 40 24 2.3 100
70ZYT21 95.5 3000 30 220 0.2 200
70ZYT51 223 3000 70 24 4.3 200
70ZYT52 223 3000 70 27 3.8 200
70ZYT53 223 3000 70 48 2.2 200
70ZYT54 223 3000 70 110 0.95 200
70ZYT55 191.1 6000 120 24 7.5 300
70ZYT56 191.1 6000 120 27 6.6 300
70ZYT57 191.1 6000 120 48 3.8 300
70ZYT58 191.1 6000 120 220 0.8 300
70ZYT59 223 1500 35 12 4.3 200
70ZYT60 238.8 4000 100 110 1.3 200
70ZYT61 191.1 6000 120 90 1.8 300
70ZYT76 191.1 2500 50 24 3 150
70ZYT77 318.5 1500 50 48 1.6 100
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
90ZYT01 323 1500 50 110 0.66 100
90ZYT02 323 1500 50 220 0.33 100
90ZYT03 294 3000 92 110 1.2 200
90ZYT04 294 3000 92 220 0.6 200
9OZYTO5 294 3000 92 24 6.1 200
90ZYT51 510 1500 80 110 1.1 100
90ZYT52 510 1500 80 220 0.55 100
90ZYT53 480 3000 150 110 2.0 200
90ZYT54 480 3000 150 220 1.0 200
90ZYT55 510 1500 80 12/24 10/5.0 100
9OZYT101 796 1500 125 110 1.6 100
90ZYT102 796 1500 125 220 0.8 100
90ZYT103 733 3000 230 110 2.8 200
9OZYT104 733 3000 230 220 1.5 200
9OZYT105 733 3000 230 24 13.5 200
90ZYT106 733 1500 125 12/24 13/6.5 100
90ZYT107 733 1300 100 36 4 100
9OZYT108 733 3000 250 48 6.5 200
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
110ZYT01 784 1500 123 110 1.8 100
110ZYT02 784 1500 123 220 0.9 100
110ZYT03 637 3000 200 110 2.8 200
110ZYT04 637 3000 200 220 1.4 200
110ZYT05 637 3000 200 24 13 200
110ZYT51 1177 1500 185 110 2.5 100
110ZYT52 1177 1500 185 220 1.25 100
110ZYT53 980 3000 308 110 4.0 200
110ZYT54 980 3000 308 220 2.0 200
110ZYT55 980 3000 308 24 16.5 200
110ZYT101 1560 1500 245 110 3.0 100
110ZYT102 1560 1500 245 220 1.5 100
110ZYT103 1274 3000 400 110 4.8 200
110ZYT104 1274 3000 400 220 2.4 200
110ZYT105 1274 3000 400 24 22.5 200
110ZYT106 1274 1500 245 12/24 24/12 100
110ZYT151 2390 1500 375 110 4.5 100
110ZYT152 2390 1500 375 220 2.3 100
110ZYT153 2230 3000 700 110 8.5 200
110ZYT154 2230 3000 700 220 4.2 200
110ZYT155 2230 3000 700 24 45 200
110ZYT156 2230 1500 375 12/24 44/22 100
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
1302YT01 2548 1500 400 110 4.8 100
130ZYT02 2548 1500 400 220 2.4 100
130ZYT03 2548 3000 800 110 9 200
130ZYT04 2548 3000 800 220 4.5 200
130ZYT05 3185 1500 500 24 28 100
130ZYT51 3185 1500 500 110 5.8 100
130ZYT52 3185 1500 500 220 2.9 100
130ZYT53 3185 3000 1000 110 11 200
130ZYT54 3185 3000 1000 220 5.5 200
130ZYT55 3185 3000 1000 24 50 200
130ZYT56 3185 1500 500 24 25 100
130ZYT101 3822 1500 600 110 7 01
130ZYT102 3822 1500 600 220 3.5 100
130ZYT103 3822 3000 1200 110 13 200
130ZYT104 3822 3000 1200 220 6.5 200
130ZYT105 3822 3000 1200 24 55 200
130ZYT106 3822 1500 600 24 30 100
130ZYT156 4775 1500 750 24 35 100
130ZYT157 4775 3000 1500 24 70 100
130ZYT158 6366 1500 1000 24 50 200
US $130
/ Piece
|
1 Piece

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Adjust Speed
Function: Driving

###

Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
55ZYT01 63.7 3000 20 24 1.5 200
55ZYT02 63.7 3000 20 27 1.3 200
55ZYT03 63.7 3000 20 48 0.7 200
55ZYT04 63.7 3000 20 110 0.34 200
552YT05 55.7 6000 35 24 2.5 300
55ZYT06 55.7 6000 35 27 2.2 300
55ZYT07 55.7 6000 35 48 1.3 300
55ZYT08 55.7 6000 35 110 0.54 300
55ZYT09 78 2500 20.4 12 3.2 150
55ZYT10 63.7 3600 24 110 0.4 200
55ZYT51 92.3 3000 29 24 1.7 200
55ZYT52 92.3 3000 29 27 1.8 200
55ZYT53 92.3 3000 29 48 1.1 200
55ZYT54 92.3 3000 29 110 0.46 200
55ZYT55 79.6 6000 50 24 3.45 300
55ZYT56 79.6 6000 50 27 3.1 300
55ZYT57 79.6 6000 50 48 1.74 300
55ZYT58 79.6 6000 50 110 0.74 300
55ZYT59 92.3 1500 15 12 1.7 200
55ZYT60 79.6 3000 29 12 3.45 300
55ZYT61 76.4 5000 40 24 2.5 250
55ZYT63 127.4 1500 20 24 1.25 100
55ZYT64 95 3000 30 220 0.25 200
55ZYT65 89.2 7500 70 110 1.0 400
552YT66 110.8 2500 29 110 0.45 150
55ZYT68 69.6 5500 40 36 1.7 250
55ZYT72 95.5 2500 25 24 1.7 150
55ZYT76 92.3 2000 19 110 0.27 100
55ZYT105 108.2 7500 85 110 1.2 400
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
70ZYT01 159.2 3000 50 24 3.2 200
70ZYT02 159.2 3000 50 27 2.9 200
70ZYT03 159.2 3000 50 48 1.5 200
10ZYT04 159.2 3000 50 110 0.7 200
70ZYT05 135.4 6000 85 24 5.2 300
70ZYT06 135.4 6000 85 27 4.8 300
70ZYT07 135.4 6000 85 48 2.6 300
70ZYT08 135.4 6000 85 110 1.1 300
70ZYT13 151.9 2200 35 90 0.6 150
70ZYT14 152.9 2500 40 180 0.35 150
70ZYT16 191 2000 40 24 2.3 100
70ZYT21 95.5 3000 30 220 0.2 200
70ZYT51 223 3000 70 24 4.3 200
70ZYT52 223 3000 70 27 3.8 200
70ZYT53 223 3000 70 48 2.2 200
70ZYT54 223 3000 70 110 0.95 200
70ZYT55 191.1 6000 120 24 7.5 300
70ZYT56 191.1 6000 120 27 6.6 300
70ZYT57 191.1 6000 120 48 3.8 300
70ZYT58 191.1 6000 120 220 0.8 300
70ZYT59 223 1500 35 12 4.3 200
70ZYT60 238.8 4000 100 110 1.3 200
70ZYT61 191.1 6000 120 90 1.8 300
70ZYT76 191.1 2500 50 24 3 150
70ZYT77 318.5 1500 50 48 1.6 100
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
90ZYT01 323 1500 50 110 0.66 100
90ZYT02 323 1500 50 220 0.33 100
90ZYT03 294 3000 92 110 1.2 200
90ZYT04 294 3000 92 220 0.6 200
9OZYTO5 294 3000 92 24 6.1 200
90ZYT51 510 1500 80 110 1.1 100
90ZYT52 510 1500 80 220 0.55 100
90ZYT53 480 3000 150 110 2.0 200
90ZYT54 480 3000 150 220 1.0 200
90ZYT55 510 1500 80 12/24 10/5.0 100
9OZYT101 796 1500 125 110 1.6 100
90ZYT102 796 1500 125 220 0.8 100
90ZYT103 733 3000 230 110 2.8 200
9OZYT104 733 3000 230 220 1.5 200
9OZYT105 733 3000 230 24 13.5 200
90ZYT106 733 1500 125 12/24 13/6.5 100
90ZYT107 733 1300 100 36 4 100
9OZYT108 733 3000 250 48 6.5 200
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
110ZYT01 784 1500 123 110 1.8 100
110ZYT02 784 1500 123 220 0.9 100
110ZYT03 637 3000 200 110 2.8 200
110ZYT04 637 3000 200 220 1.4 200
110ZYT05 637 3000 200 24 13 200
110ZYT51 1177 1500 185 110 2.5 100
110ZYT52 1177 1500 185 220 1.25 100
110ZYT53 980 3000 308 110 4.0 200
110ZYT54 980 3000 308 220 2.0 200
110ZYT55 980 3000 308 24 16.5 200
110ZYT101 1560 1500 245 110 3.0 100
110ZYT102 1560 1500 245 220 1.5 100
110ZYT103 1274 3000 400 110 4.8 200
110ZYT104 1274 3000 400 220 2.4 200
110ZYT105 1274 3000 400 24 22.5 200
110ZYT106 1274 1500 245 12/24 24/12 100
110ZYT151 2390 1500 375 110 4.5 100
110ZYT152 2390 1500 375 220 2.3 100
110ZYT153 2230 3000 700 110 8.5 200
110ZYT154 2230 3000 700 220 4.2 200
110ZYT155 2230 3000 700 24 45 200
110ZYT156 2230 1500 375 12/24 44/22 100
Model (mN.m)Torque (r/min)Speed 1Power (V)Voltage (A)Current ≤ (r/min)Speed tolerance
1302YT01 2548 1500 400 110 4.8 100
130ZYT02 2548 1500 400 220 2.4 100
130ZYT03 2548 3000 800 110 9 200
130ZYT04 2548 3000 800 220 4.5 200
130ZYT05 3185 1500 500 24 28 100
130ZYT51 3185 1500 500 110 5.8 100
130ZYT52 3185 1500 500 220 2.9 100
130ZYT53 3185 3000 1000 110 11 200
130ZYT54 3185 3000 1000 220 5.5 200
130ZYT55 3185 3000 1000 24 50 200
130ZYT56 3185 1500 500 24 25 100
130ZYT101 3822 1500 600 110 7 01
130ZYT102 3822 1500 600 220 3.5 100
130ZYT103 3822 3000 1200 110 13 200
130ZYT104 3822 3000 1200 220 6.5 200
130ZYT105 3822 3000 1200 24 55 200
130ZYT106 3822 1500 600 24 30 100
130ZYT156 4775 1500 750 24 35 100
130ZYT157 4775 3000 1500 24 70 100
130ZYT158 6366 1500 1000 24 50 200

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China 24V 48V Low Speed High Torque DC Motor DC Planetary Gear Motor High Torque DC Motor with Planetary Gearbox Gear Ratio: 1: 36     motor efficiencyChina 24V 48V Low Speed High Torque DC Motor DC Planetary Gear Motor High Torque DC Motor with Planetary Gearbox Gear Ratio: 1: 36     motor efficiency
editor by czh 2022-11-26