Tag Archives: single phase electric motor

China Good quality Yy My Ml Yc Mc Ys Ms Y2 Ie2 Ye2 Capacitor Start Run B14 B5 Single Three Phase Induction AC Electric Electrical Motor for Fans Blowers Pumps Compressor Cleaners manufacturer

Product Description

YY series single phase capacitor run asynchronous  motors,are suitable for fans, blowers, and various equipments requiring light load starting.This series motors with  high power factor and efficiency, small size, light weight, good performance, low noise, and convenient maintenance

 

Power: 0.55kw-2.2kw Voltage: 220/230V( can can done as your need)
Frequency: 50/60hz Enamelled Wire: Copper Wire (Can Done Aluminum wire as Your Need)
Insulation Class: F Mounting Way: B3/B5/B14/B34/B35
Protection Grade: IP54 IP44 motor body : cast iron/cast aluminum

.

1. Are you a manufacturer or trading company?
We are a professional manufacturer of single phase motor,three phase electric motor and pump

2. Where is your factory located? 
Our factory is in HangZhou,HangZhou,ZHangZhoug,China. it is very near from HangZhou city,HangZhou city,ZheJiang city.

3. How do you confirm your quality?
A. Rich experience on weakness may appear on every components and products;
B. 100% checking before order and bulk sample reserved in warehouse for after-sale service.

4. Is it acceptable to use self-label brand?
Yes, we provide OEM products, also welcome ODM OTM orders.

5. What is your payment terms?
T/T and L/C. Normally T/T 30% deposit, 70% balance should be paid against the B/L copy.
Better payment terms Available for regular esteemed customers.

6. What is your company’s production capacity every year?
We have over 200,000 pcs production capacity every year.

7. Is sample available for my reference before final order?
Yes, we support trial sample order(1-100pcs) for you. Please contact with our sevice staff.

If you have any other questions,welcome to contact  us.

Application: Industrial
Speed: Variable Speed
Number of Stator: Single-Phase
Samples:
US$ 60/Piece
1 Piece(Min.Order)

|

Order Sample

1.1kw
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

electric motor

How does an electric motor ensure efficient energy conversion?

An electric motor ensures efficient energy conversion by employing various design features and principles that minimize energy losses and maximize the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors achieve efficient energy conversion:

  1. Efficient Motor Design: Electric motors are designed with careful consideration given to their construction and materials. High-quality magnetic materials, such as laminated iron cores and permanent magnets, are used to reduce magnetic losses and maximize magnetic field strength. Additionally, the motor’s windings are designed with low-resistance conductors to minimize electrical losses. By optimizing the motor’s design, manufacturers can improve its overall efficiency.
  2. Reducing Friction and Mechanical Losses: Electric motors are designed to minimize friction and mechanical losses. This is achieved through the use of high-quality bearings and lubrication systems that reduce friction between moving parts. By reducing friction, the motor can operate more efficiently, translating more of the input energy into useful mechanical work rather than dissipating it as heat.
  3. Efficient Control and Power Electronics: Electric motors employ advanced control techniques and power electronics to enhance energy conversion efficiency. Variable frequency drives (VFDs) are commonly used to control motor speed and torque, allowing the motor to operate at optimal efficiency levels under varying load conditions. Power electronics devices, such as insulated gate bipolar transistors (IGBTs) and MOSFETs, minimize switching losses and optimize power flow within the motor.
  4. Regenerative Braking and Energy Recovery: Some electric motors, particularly those used in hybrid electric vehicles (HEVs) and electric trains, incorporate regenerative braking systems. These systems convert the kinetic energy of the moving vehicle back into electrical energy, which can be stored and reused. By capturing and reusing energy that would otherwise be wasted as heat during braking, regenerative braking significantly improves overall energy efficiency.
  5. Efficient Cooling and Thermal Management: Electric motors generate heat during operation, and excessive heat can lead to energy losses and reduced efficiency. To mitigate this, motors are designed with efficient cooling systems such as fans, heat sinks, or liquid cooling methods. Proper thermal management ensures that the motor operates within the optimal temperature range, reducing losses and improving overall efficiency.
  6. High-Efficiency Standards and Regulations: Governments and organizations have established energy efficiency standards and regulations for electric motors. These standards encourage manufacturers to produce motors with higher efficiency ratings. Compliance with these standards ensures that motors meet certain efficiency criteria, resulting in improved energy conversion and reduced energy consumption.

By incorporating these design features, control techniques, and efficiency measures, electric motors achieve efficient energy conversion. They minimize energy losses due to factors such as resistance, friction, and heat dissipation, ensuring that a significant portion of the input electrical energy is converted into useful mechanical work. The continuous advancements in motor design, materials, and control technologies further contribute to improving the overall energy efficiency of electric motors.

electric motor

How do electric motors impact the overall productivity of manufacturing processes?

Electric motors have a significant impact on the overall productivity of manufacturing processes. Their versatility, reliability, and efficiency make them essential components in a wide range of industrial applications. Here’s a detailed explanation of how electric motors contribute to enhancing productivity in manufacturing:

  1. Mechanization and Automation: Electric motors serve as the primary power source for a vast array of industrial machinery and equipment. By providing mechanical power, electric motors enable mechanization and automation of manufacturing processes. They drive conveyor belts, pumps, compressors, robots, and other machinery, allowing for efficient material handling, assembly, and production operations. The use of electric motors in mechanized and automated systems reduces manual labor, accelerates production rates, and improves overall productivity.
  2. Precise Control and Repeatable Movements: Electric motors offer precise control over speed, position, and torque, enabling accurate and repeatable movements in manufacturing processes. This precision is crucial for tasks that require consistent and controlled operations, such as precision cutting, drilling, machining, and assembly. Electric motors allow for fine adjustments and control, ensuring that manufacturing operations are performed with high levels of accuracy and repeatability, which ultimately enhances productivity and product quality.
  3. High Speed and Acceleration: Electric motors are capable of achieving high rotational speeds and rapid acceleration, enabling fast-paced manufacturing processes. Motors with high-speed capabilities are utilized in applications that require quick operations, such as high-speed machining, packaging, and sorting. The ability of electric motors to rapidly accelerate and decelerate facilitates efficient cycle times and overall process throughput, contributing to increased productivity.
  4. Reliability and Durability: Electric motors are known for their reliability and durability, making them well-suited for demanding manufacturing environments. With proper maintenance, electric motors can operate continuously for extended periods, minimizing downtime due to motor failures. The reliability of electric motors ensures consistent and uninterrupted production, optimizing manufacturing productivity and reducing costly disruptions.
  5. Energy Efficiency: Electric motors have witnessed significant advancements in energy efficiency, leading to reduced energy consumption in manufacturing processes. Energy-efficient motors convert a higher percentage of electrical input power into useful mechanical output power, resulting in lower energy costs. By utilizing energy-efficient electric motors, manufacturers can achieve cost savings and improve the overall sustainability of their operations. Additionally, energy-efficient motors generate less heat, reducing the need for cooling and improving the overall efficiency of auxiliary systems.
  6. Integration with Control Systems: Electric motors can be seamlessly integrated with sophisticated control systems and automation technologies. This integration allows for centralized control, monitoring, and optimization of manufacturing processes. Control systems can regulate motor speed, torque, and performance based on real-time data, enabling adaptive and efficient operations. The integration of electric motors with control systems enhances the overall productivity by optimizing process parameters, minimizing errors, and facilitating seamless coordination between different stages of manufacturing.

Electric motors significantly impact the overall productivity of manufacturing processes by enabling mechanization, automation, precise control, high-speed operations, reliability, energy efficiency, and integration with advanced control systems. Their versatility and performance characteristics make them indispensable in a wide range of industries, including automotive, electronics, aerospace, food processing, and more. By harnessing the power of electric motors, manufacturers can streamline operations, improve product quality, increase throughput, and ultimately enhance productivity in their manufacturing processes.

electric motor

What industries and applications commonly use electric motors?

Electric motors are widely utilized in various industries and applications due to their versatility, efficiency, and controllability. Here’s a detailed overview of the industries and applications where electric motors are commonly employed:

  1. Industrial Manufacturing: Electric motors are extensively used in industrial manufacturing processes. They power machinery and equipment such as conveyor systems, pumps, compressors, fans, mixers, robots, and assembly line equipment. Electric motors provide efficient and precise control over motion, making them essential for mass production and automation.
  2. Transportation: Electric motors play a crucial role in the transportation sector. They are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) to drive the wheels, providing propulsion. Electric motors offer benefits such as high torque at low speeds, regenerative braking, and improved energy efficiency. They are also employed in trains, trams, ships, and aircraft for various propulsion and auxiliary systems.
  3. HVAC Systems: Heating, ventilation, and air conditioning (HVAC) systems utilize electric motors for air circulation, fans, blowers, and pumps. Electric motors help in maintaining comfortable indoor environments and ensure efficient cooling, heating, and ventilation in residential, commercial, and industrial buildings.
  4. Appliances and Household Devices: Electric motors are found in numerous household appliances and devices. They power refrigerators, washing machines, dryers, dishwashers, vacuum cleaners, blenders, food processors, air conditioners, ceiling fans, and many other appliances. Electric motors enable the necessary mechanical actions for these devices to function effectively.
  5. Renewable Energy: Electric motors are integral components of renewable energy systems. They are used in wind turbines to convert wind energy into electrical energy. Electric motors are also employed in solar tracking systems to orient solar panels towards the sun for optimal energy capture. Additionally, electric motors are utilized in hydroelectric power plants for controlling water flow and generating electricity.
  6. Medical Equipment: Electric motors are crucial in various medical devices and equipment. They power surgical tools, pumps for drug delivery and fluid management, diagnostic equipment, dental drills, patient lifts, wheelchair propulsion, and many other medical devices. Electric motors provide the necessary precision, control, and reliability required in healthcare settings.
  7. Robotics and Automation: Electric motors are extensively used in robotics and automation applications. They drive the joints and actuators of robots, enabling precise and controlled movement. Electric motors are also employed in automated systems for material handling, assembly, packaging, and quality control in industries such as automotive manufacturing, electronics, and logistics.
  8. Aerospace and Defense: Electric motors have significant applications in the aerospace and defense sectors. They are used in aircraft for propulsion, control surfaces, landing gear, and auxiliary systems. Electric motors are also employed in military equipment, drones, satellites, guided missiles, and underwater vehicles.

These are just a few examples of the industries and applications where electric motors are commonly used. Electric motors provide a reliable, efficient, and controllable means of converting electrical energy into mechanical energy, making them essential components in numerous technologies and systems across various sectors.

China Good quality Yy My Ml Yc Mc Ys Ms Y2 Ie2 Ye2 Capacitor Start Run B14 B5 Single Three Phase Induction AC Electric Electrical Motor for Fans Blowers Pumps Compressor Cleaners   manufacturer China Good quality Yy My Ml Yc Mc Ys Ms Y2 Ie2 Ye2 Capacitor Start Run B14 B5 Single Three Phase Induction AC Electric Electrical Motor for Fans Blowers Pumps Compressor Cleaners   manufacturer
editor by CX 2023-12-15

China best CE Yc Yl Y2 Y  GOST AC Three Single Phase Asynchronous Induction Copper Wire Winding Electrical Electric Motor with Hot selling

Product Description

 

 

Technical parameter:                                                                                                                         

Output
(KW)

MODEL

Amps
(A)

Speed
(R/min)

Eff.
%

p.f.

RT
N.m

     

Noise LwdB
(A)

Weight
(Kg)

380V 50HZ 2P

0.18

Y2-631-2

0.5

2800

65.0

0.80

00.61

2.2

2.2

5.5

61

14

0.25

Y2-632-2

0.7

2800

68.0

0.81

0.96

2.2

2.2

5.5

61

14.5

0.37

Y2-711-2

1.0

2800

70.0

0.81

1.26

2.2

2.2

6.1

64

15

0.55

Y2-712-2

1.4

2800

73.0

0.82

1.88

2.2

2.3

6.1

64

15.5

0.75

Y2-801-2

1.8

2825

75.0

0.83

2.54

2.2

2.3

6.1

67

16.5

1.1

Y2-802-2

2.6

2825

77.0

0.84

3.72

2.2

2.3

7.0

67

17.5

1.5

Y2-90S-2

3.4

2840

79.0

0.84

5.04

2.2

2.3

7.0

72

21

2.2

Y2-90L-2

4.9

2840

81.0

0.85

7.40

2.2

2.3

7.0

72

25

3

Y2-100L-2

6.3

2880

83.0

0.87

9.95

2.2

2.3

7.5

76

33

4

Y2-112M-2

8.1

2890

85.0

0.88

13.22

2.2

2.3

7.5

77

41

5.5

Y2-132S1-2

11.0

2900

86.0

0.88

18.11

2.2

2.3

7.5

80

63

7.5

Y2-132S2-2

14.9

2900

87.0

0.88

24.70

2.2

2.3

7.5

80

70

11

Y2-160M1-2

21.3

2930

88.0

0.89

35.85

2.2

2.3

7.5

86

110

15

Y2-160M2-2

28.8

2930

89.0

0.89

48.89

2.2

2.3

7.5

86

120

18.5

Y2-160L-2

34.7

2930

90.5

0.90

60.30

2.2

2.3

7.5

86

135

22

Y2-180M-2

41.0

2940

91.2

0.90

71.46

2.0

2.3

7.5

89

165

30

Y2-200L1-2

55.5

2950

92.0

0.90

97.12

2.0

2.3

7.5

92

218

37

Y2-200L2-2

67.9

2950

92.3

0.90

119.78

2.0

2.3

7.5

92

230

45

Y2-225M-2

82.3

2970

92.3

0.90

144.70

2.0

2.3

7.5

92

280

55

Y2-250M-2

100.4

2970

92.5

0.90

176.85

2.0

2.3

7.5

93

365

75

Y2-280S-2

134.4

2970

93.2

0.91

241.16

2.0

2.3

7.5

94

495

90

Y2-280M-2

160.2

2970

93.8

0.91

289.39

2.0

2.3

7.5

94

565

110

Y2-315S-2

195.4

2980

94.0

0.91

352.51

1.8

2.2

7.1

96

890

132

Y2-315M-2

233.2

2980

94.5

0.91

423.02

1.8

2.2

7.1

96

980

160

Y2-315L1-2

279.3

2980

94.6

0.92

512.75

1.8

2.2

7.1

99

1055

200

Y2-315L2-2

348.4

2980

94.8

0.92

640.94

1.8

2.2

7.1

99

1110

250

Y2-355M-2

433.2

2985

95.3

0.92

799.83

1.6

2.2

7.1

103

1900

315

Y2-355L-2

544.2

2985

95.6

0.92

1007.79

1.6

2.2

7.1

103

2300

380V 50HZ 4P

0.12

Y2-631-4

0.4

1400

57.0

0.72

0.82

2.1

2.2

4.4

52

13

0.18

Y2-632-4

0.6

1400

60.0

0.73

1.23

2.1

2.2

4.4

52

13.5

0.25

Y2-711-4

0.8

1400

65.0

0.74

1.71

2.1

2.2

5.2

55

14

0.37

Y2-712-4

1.1

1400

67.0

0.75

2.54

2.1

2.2

5.2

55

14.5

0.55

Y2-801-4

1.6

1390

71.0

0.75

3.78

2.4

2.3

5.2

58

15

0.75

Y2-802-4

2.0

1490

73.0

0.77

5.15

2.4

2.3

6.0

58

16

1.1

Y2-90S-4

2.0

1400

75.0

0.77

7.50

2.3

2.3

6.0

61

23

1.5

Y2-90L-4

3.7

1420

78.0

0.79

10.23

2.3

2.3

6.0

61

25

2.2

Y2-100L1-4

5.2

1420

80.0

0.81

14.80

2.3

2.3

7.0

64

33

3.

Y2-100L2-4

6.8

1420

82.0

0.82

20.18

2.3

2.3

7.0

64

35

4.

Y2-112M-4

8.8

1440

84.0

0.82

26.53

2.3

2.3

7.0

65

41

5.5

Y2-132S-4

11.8

1440

85.0

0.83

36.48

2.3

2.3

7.0

71

65

7.5

Y2-132M-S

15.6

1440

87.0

0.84

49.74

2.2

2.3

7.0

71

76

11

Y2-160M-4

22.3

1460

88.0

0.85

71.59

2.2

2.3

7.0

75

118

15

Y2-160L-4

30.1

1460

89.0

0.85

98.12

2.2

2.3

7.5

75

132

18.5

Y2-180M-4

36.5

1470

90.5

0.85

120.19

2.2

2.3

7.5

76

164

22

Y2-1180L-4

43.2

1470

91.0

0.85

142.93

2.2

2.3

7.5

76

182

30

Y2-200L-4

57.6

1480

92.0

0.86

193.68

2.2

2.3

7.2

79

245

37

Y2-225S-4

69.9

1480

92.5

0.87

238.87

2.2

2.3

7.2

81

258

45

Y2-225M-4

84.7

1480

92.8

0.87

290.37

2.2

2.3

7.2

81

290

55

Y2-250M-4

103.3

1480

93.0

0.87

354.90

2.2

2.3

7.2

83

388

75

Y2-280S-4

139.6

1480

93.8

0.87

483.95

2.2

2.3

7.2

86

510

90

Y2-280M-4

166.9

1485

94.2

0.87

578.79

2.2

2.3

7.2

86

606

110

Y2-315S-4

201.0

1485

94.5

0.88

707.41

2.1

2.2

6.9

93

910

132

Y2-315M-4

240.4

1485

94.8

0.88

848.89

2.1

2.2

6.9

93

1000

160

Y2-315L1-4

287.8

1485

94.9

0.89

1571.96

2.1

2.2

6.9

97

1055

200

Y2-315L2-4

359.4

1485

95.0

0.89

1286.20

2.1

2.2

6.9

97

1128

250

Y2-355M-4

442.9

1490

95.3

0.90

1602.35

2.1

2.2

6.9

101

1700

315

Y2-355L-4

556.2

1490

95.6

0.90

2018.96

2.1

2.2

6.9

101

1900

380V 50HZ 6P

0.18

Y2-711-6

0.8

900

56.0

0.60

1.91

1.9

2.0

4.0

52

14

0.25

Y2-711-6

0.9

900

59.0

0.68

2.65

1.9

2.0

4.0

52

14.5

0.37

Y2-801-6

1.3

900

62.0

0.70

3.93

1.9

2.0

4.7

54

15

0.55

Y2-802-6

1.8

900

65.0

0.72

5.84

1.9

2.1

4.7

54

16

0.75

Y2-90S-6

2.3

910

69.0

0.72

7.87

2.0

2.1

5.5

57

19

1.1

Y2-90L-6

3.2

910

72.0

0.73

11.54

2.0

2.1

5.5

57

22

1.5

Y2-100L-6

3.9

940

76.0

0.76

15.24

2.0

2.1

5.5

61

32

2.2

Y2-112M-6

5.6

940

79.0

0.76

22.35

2.1

2.1

6.5

65

41

3

Y2-132S-6

7.4

960

81.0

0.76

29.84

2.1

2.1

6.5

69

63

4

Y2-132M1-6

9.9

960

82.0

0.76

39.79

2.1

2.1

6.5

69

72

5.5

Y2-132M-6

12.9

960

84.0

0.77

54.71

2.1

2.1

6.5

69

81

7.5

Y2-160M-6

16.9

970

86.0

0.78

73.84

2.0

2.1

6.5

73

118

11

Y2-160L-6

24.2

970

87.5

0.79

108.30

2.0

2.1

6.5

73

145

15

Y2-180L-6

31.6

970

89.0

0.81

147.68

2.1

2.1

7.0

73

178

18.5

Y2-200L1-6

38.6

970

90.0

0.81

182.14

2.1

2.1

7.0

76

200

22

Y2-200L2-6

44.7

970

90.0

0.83

216.60

2.1

2.1

7.0

76

228

30

Y2-225M-6

59.3

980

91.5

0.84

292.35

2.0

2.1

7.0

76

265

37

Y2-250M-6

71.1

980

92.0

0.86

360.56

2.1

2.1

7.0

78

370

45

Y2-280S-6

85.9

980

92.5

0.86

438.52

2.1

2.0

7.0

80

490

55

Y2-280M-6

104.7

980

92.8

0.86

535.97

2.1

2.0

7.0

80

540

75

Y2-315S-6

141.7

980

93.5

0.86

730.87

2.0

2.0

7.0

85

900

90

Y2-315M-6

169.5

985

93.8

0.86

872.59

2.0

2.0

7.0

85

980

110

Y2-315L1-6

206.7

985

94.0

0.86

1066.50

2.0

2.0

6.7

85

1045

132

Y2-315L2-6

244.7

985

94.2

0.87

1279.80

2.0

2.0

6.7

85

1100

160

Y2-355M1-6

292.3

990

94.5

0.88

1543.43

1.9

2.0

6.7

92

1440

200 Y2-355M2-6 364.6 990 94.7 0.88 1929.29 1.9 2.0 6.7 92 1600

250

Y2-355L-6

454.8

990

94.9

0.88

2411.62

1.9

2.0

6.7

92

1700

FACTORY OUTLINED LOOKING:

 

Application: Industrial, Universal, Household Appliances, Power Tools
Operating Speed: Low Speed
Number of Stator: Three-Phase
Species: 2,4,6,8,10,12p
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How does an electric motor ensure efficient energy conversion?

An electric motor ensures efficient energy conversion by employing various design features and principles that minimize energy losses and maximize the conversion of electrical energy into mechanical energy. Here’s a detailed explanation of how electric motors achieve efficient energy conversion:

  1. Efficient Motor Design: Electric motors are designed with careful consideration given to their construction and materials. High-quality magnetic materials, such as laminated iron cores and permanent magnets, are used to reduce magnetic losses and maximize magnetic field strength. Additionally, the motor’s windings are designed with low-resistance conductors to minimize electrical losses. By optimizing the motor’s design, manufacturers can improve its overall efficiency.
  2. Reducing Friction and Mechanical Losses: Electric motors are designed to minimize friction and mechanical losses. This is achieved through the use of high-quality bearings and lubrication systems that reduce friction between moving parts. By reducing friction, the motor can operate more efficiently, translating more of the input energy into useful mechanical work rather than dissipating it as heat.
  3. Efficient Control and Power Electronics: Electric motors employ advanced control techniques and power electronics to enhance energy conversion efficiency. Variable frequency drives (VFDs) are commonly used to control motor speed and torque, allowing the motor to operate at optimal efficiency levels under varying load conditions. Power electronics devices, such as insulated gate bipolar transistors (IGBTs) and MOSFETs, minimize switching losses and optimize power flow within the motor.
  4. Regenerative Braking and Energy Recovery: Some electric motors, particularly those used in hybrid electric vehicles (HEVs) and electric trains, incorporate regenerative braking systems. These systems convert the kinetic energy of the moving vehicle back into electrical energy, which can be stored and reused. By capturing and reusing energy that would otherwise be wasted as heat during braking, regenerative braking significantly improves overall energy efficiency.
  5. Efficient Cooling and Thermal Management: Electric motors generate heat during operation, and excessive heat can lead to energy losses and reduced efficiency. To mitigate this, motors are designed with efficient cooling systems such as fans, heat sinks, or liquid cooling methods. Proper thermal management ensures that the motor operates within the optimal temperature range, reducing losses and improving overall efficiency.
  6. High-Efficiency Standards and Regulations: Governments and organizations have established energy efficiency standards and regulations for electric motors. These standards encourage manufacturers to produce motors with higher efficiency ratings. Compliance with these standards ensures that motors meet certain efficiency criteria, resulting in improved energy conversion and reduced energy consumption.

By incorporating these design features, control techniques, and efficiency measures, electric motors achieve efficient energy conversion. They minimize energy losses due to factors such as resistance, friction, and heat dissipation, ensuring that a significant portion of the input electrical energy is converted into useful mechanical work. The continuous advancements in motor design, materials, and control technologies further contribute to improving the overall energy efficiency of electric motors.

electric motor

How do electric motors contribute to the precision of tasks like robotics?

Electric motors play a critical role in enabling the precision of tasks in robotics. Their unique characteristics and capabilities make them well-suited for precise and controlled movements required in robotic applications. Here’s a detailed explanation of how electric motors contribute to the precision of tasks in robotics:

  1. Precise Positioning: Electric motors offer precise positioning capabilities, allowing robots to move with accuracy and repeatability. By controlling the motor’s speed, direction, and rotation, robots can achieve precise position control, enabling them to perform tasks with high levels of accuracy. This is particularly important in applications that require precise manipulation, such as assembly tasks, pick-and-place operations, and surgical procedures.
  2. Speed Control: Electric motors provide precise speed control, allowing robots to perform tasks at varying speeds depending on the requirements. By adjusting the motor’s speed, robots can achieve smooth and controlled movements, which is crucial for tasks that involve delicate handling or interactions with objects or humans. The ability to control motor speed precisely enhances the overall precision and safety of robotic operations.
  3. Torque Control: Electric motors offer precise torque control, which is essential for tasks that require forceful or delicate interactions. Torque control allows robots to exert the appropriate amount of force or torque, enabling them to handle objects, perform assembly tasks, or execute movements with the required precision. By modulating the motor’s torque output, robots can delicately manipulate objects without causing damage or apply sufficient force for tasks that demand strength.
  4. Feedback Control Systems: Electric motors in robotics are often integrated with feedback control systems to enhance precision. These systems utilize sensors, such as encoders or resolvers, to provide real-time feedback on the motor’s position, speed, and torque. The feedback information is used to continuously adjust and fine-tune the motor’s performance, compensating for any errors or deviations and ensuring precise movements. The closed-loop nature of feedback control systems allows robots to maintain accuracy and adapt to dynamic environments or changing task requirements.
  5. Dynamic Response: Electric motors exhibit excellent dynamic response characteristics, enabling quick and precise adjustments to changes in command signals. This responsiveness is particularly advantageous in robotics, where rapid and accurate movements are often required. Electric motors can swiftly accelerate, decelerate, and change direction, allowing robots to perform intricate tasks with precision and efficiency.
  6. Compact and Lightweight: Electric motors are available in compact and lightweight designs, making them suitable for integration into various robotic systems. Their small size and high power-to-weight ratio allow for efficient utilization of space and minimal impact on the overall weight and size of the robot. This compactness and lightness contribute to the overall precision and maneuverability of robotic platforms.

Electric motors, with their precise positioning, speed control, torque control, feedback control systems, dynamic response, and compactness, significantly contribute to the precision of tasks in robotics. These motors enable robots to execute precise movements, manipulate objects with accuracy, and perform tasks that require high levels of precision. The integration of electric motors with advanced control algorithms and sensory feedback systems empowers robots to adapt to various environments, interact safely with humans, and achieve precise and controlled outcomes in a wide range of robotic applications.

electric motor

What is an electric motor and how does it function?

An electric motor is a device that converts electrical energy into mechanical energy. It is a common type of motor used in various applications, ranging from household appliances to industrial machinery. Electric motors operate based on the principle of electromagnetism and utilize the interaction between magnetic fields and electric current to generate rotational motion. Here’s a detailed explanation of how an electric motor functions:

  1. Basic Components: An electric motor consists of several key components. These include a stationary part called the stator, which typically contains one or more coils of wire wrapped around a core, and a rotating part called the rotor, which is connected to an output shaft. The stator and the rotor are often made of magnetic materials.
  2. Electromagnetic Fields: The stator is supplied with an electric current, which creates a magnetic field around the coils. This magnetic field is typically generated by the flow of direct current (DC) or alternating current (AC) through the coils. The rotor, on the other hand, may have permanent magnets or electromagnets that produce their own magnetic fields.
  3. Magnetic Interactions: When an electric current flows through the coils in the stator, it generates a magnetic field. The interaction between the magnetic fields of the stator and the rotor causes a rotational force or torque to be exerted on the rotor. The direction of the current and the arrangement of the magnetic fields determine the direction of the rotational motion.
  4. Electromagnetic Induction: In some types of electric motors, such as induction motors, electromagnetic induction plays a significant role. When alternating current is supplied to the stator, it creates a changing magnetic field that induces voltage in the rotor. This induced voltage generates a current in the rotor, which in turn produces a magnetic field that interacts with the stator’s magnetic field, resulting in rotation.
  5. Commutation: In motors that use direct current (DC), such as brushed DC motors, an additional component called a commutator is employed. The commutator helps to reverse the direction of the current in the rotor’s electromagnets as the rotor rotates. By periodically reversing the current, the commutator ensures that the magnetic fields of the rotor and the stator are always properly aligned, resulting in continuous rotation.
  6. Output Shaft: The rotational motion generated by the interaction of the magnetic fields is transferred to the output shaft of the motor. The output shaft is connected to the load, such as a fan blade or a conveyor belt, allowing the mechanical energy produced by the motor to be utilized for various applications.

In summary, an electric motor converts electrical energy into mechanical energy through the interaction of magnetic fields and electric current. By supplying an electric current to the stator, a magnetic field is created, which interacts with the magnetic field of the rotor, causing rotational motion. The type of motor and the arrangement of its components determine the specific operation and characteristics of the motor. Electric motors are widely used in numerous devices and systems, providing efficient and reliable mechanical power for a wide range of applications.

China best CE Yc Yl Y2 Y  GOST AC Three Single Phase Asynchronous Induction Copper Wire Winding Electrical Electric Motor   with Hot selling	China best CE Yc Yl Y2 Y  GOST AC Three Single Phase Asynchronous Induction Copper Wire Winding Electrical Electric Motor   with Hot selling
editor by CX 2023-11-29

China 60 ktyz ac 24v electric synchronous 220v single phase ac motor with Good quality

Warranty: 3months-1year
Model Number: TYD60-375-E
Type: Synchronous Motor
Frequency: 50/60Hz
Protect Feature: Drip-proof
AC Voltage: 24V,110V,220V
Efficiency: IE 1
Dielectric strength: AC1500/50Hz/min
Duty type: S1continuous CONT S2(30min)
Operating temperature: -15~40
Insulation class: B
Coil temperature: <80
Rotation: CW/CCW(Reversible)
Certification: ce
Packaging Details: Package of 60 ktyz synchronous motor:500Pcs/Ctn ,Packing Size:23*47*29/50pcs
Port: HangZhou

TYD60-375-E SPECIFICATIONS
Rated voltage
V
24
110
220-240
24
110
220-240
Power frequence
Hz
50/60
50/60
Input power
W
<17
<25
Inputcurrent
A
<0.63
<0.14
<0.07
<1.2
<0.3
<0.15
Rotation
CW/CCW(Reversible)
CW/CCW(Reversible)
Operating temperature
°C
—15~40
—15~40
Coil temperature
k
<80
<80
Insulation class
B
B
Insulation strength
AC1500/50Hz/min
AC1500/50Hz/min
Capacitance
47μF/63V
2.2μF/250V
0.56μF/450V
57μF/63V
2.8μF/250V
0.68μF/450V
Duty type
S1 CONT
S2(30min)

Item Name60 ktyz ac 24v electric synchronous 220v single phase ac motor
SizeΦ60*H60mm Φ60*H73mm
ColorBlack
Custom DesighWelcome
ServiceOEM&ODM
MOQ10/pcs
SampleAvailable
Sample Lead Time30 Days
Payment TermsL/C D/A D/P T/T Western Union MoneyGram Other
PackingCarton
Production Time10-15 Days
Delivery PortHangZhou or ZheJiang

Product Detail

Company Information
FAQQ:How to pay 60ktyz reduction motor sample and express charges?A:You can pay to our company account directly.For those customer who has express account,we will send the 60ktyz reduction motor samples by freight collected.
Q:What is your terms of payment?A:Accept 100% in advance for sample.For regular orders,we prefer 30% deposit in advance,70% before shipment.
Q:How do you control the quality?A:We have QC team comply with TQM,each step is in compliance to the standards.

Q: How to confirm the quality with us before starting to produce?
1) We can provide samples and you can choose 1 or more, and then we make the quality according to that.
2) Send us your samples, and we will make it according to your quality.
Q: How to solve the quality problems after sales?
A: Take photos of the problems and send to us after we comfirm the problems, within 3 days,we will make a satisfied solution for you.
Q: What is the lead time?
A: 30-35days after sample confirmation.
Q:What is your terms of delivery?
A:We accept FOB,CIF,etc. You can choose the 1 which is the most convenient or cost effective for you.
Q:What is your terms of packing?
A: Generally, we pack our goods in neutral cartons. If you have legally registered patent, we can pack the goods by your logo after getting your authorition letters.

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China 60 ktyz ac 24v electric synchronous 220v single phase ac motor     with Good qualityChina 60 ktyz ac 24v electric synchronous 220v single phase ac motor     with Good quality
editor by czh

China small single phase 230v 220v 6w 10w 50HZ 60HZ electric ac gear box motor with speed controller with Good quality

Warranty: 1 year
Model Number: 2IK06RGN-C/2GN30K
Type: Induction Motor
Frequency: 50HZ
Phase: Single-phase
Protect Feature: Totally Enclosed
AC Voltage: 208-230 / 240 V
Efficiency: IE 2
Gearbox ratio: 1:3 TO 1:200
Shaft diameter: 8mm
Motor net weight: 1.2KG
Rated power: 6W
Rated Speed: 50rpm/min
Rated Torque: 0.95N.M
Motor diameter: 60*60mm
Brand: DMKE
Product Name: ac gear motor
Certification: ce,VDE,RoHS
Packaging Details: According to the size of the motor safety packaging1pcs small single phase 230v 220v 6w 10w 50HZ 60HZ electric ac gear box motor with speed controller 1pcs carton
Port: HangZhou

Click the each picture for more detail information. For Of Product Specifications, Please Consult Customer Service To Obtain The Product Catalog. Kindly remind:Please contact us for updated new size drawing if you have other parameter needed. Thanks Click the each picture for more detail information. Customizable accessories:motor length, shaft, voltage,power,rated speed and so on.Feature: A. High power range from 5W to 20KW B. Rich stock and fast shipping time in 10 working days C. Easy for speed & direction adjustmentD. 16mm to 220mm size range with low noisy E. Strong stability for driver/controllerF. Lifetime above continuous 10000 hoursG. IP65 protection rank is available for us H. Above 90% enery efficiency motor is available I. 3D file is available if customers neededJ. Permanent magnet brushless dc motor K.High-performance and stable matching driver and controllerNotice for Usage: 1).Please don’t use motor out of the range of nameplate of gear box and motor and the specification of productcatalogue, avoiding getting an electric shock, hurting or damaging the device. 2).Please do not put your fingers and things intothe opening part of gear or motor ,in order to prevent getting and electric shock,hurting,catching a fire of damaging device etc.3).Please do not use the Injured gear head of motor, in order to prevent hurting,catching a fire etc. 4).Please do not put off the nameplate. 5) If the products are reformed by the customers personally, it no longer belongs to the guarantee scope, and ourcompany doesn’t undertake any responsibility. 6) When you move it, if it shed off or tilt to 1 side, it is very dangerous, please pay more attention. 7) Please must not put the flammable thing near the gear head and motor, in order to prevent catching a fire. DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry. We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servocontrollers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, liftingequipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments. With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking forward to establishing long-term business relationship together with you for mutual business success. Q1: What kind motors you can provide?A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servomotor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.Q2: Is there a MOQ for your motors?A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% differencethan bulk price based on different style.Q3: Could you send me a price list?A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque andshaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list. Ifyou can share your detailed specification and order qty, we’ll see what offer we can provide.Q4: Are you motors reversible?A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by differentwire connection.Q5: Is it possible for you to develop new motors if we provide the tooling cost?A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll makeour evaluation to see if we can arrange or not.Q6:How about your delivery time?A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on theorder qty. For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.Please take the salesconfirmation for final reference.Q7:What’s your warranty terms?A6: One year

How to Select a Gear Motor

A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.

Angular geared motors

Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Motor

Planetary gearboxes

Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Motor

Hydraulic gear motors

Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Motor

Croise motors

There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.

China small single phase 230v 220v 6w 10w 50HZ 60HZ electric ac gear box motor with speed controller     with Good qualityChina small single phase 230v 220v 6w 10w 50HZ 60HZ electric ac gear box motor with speed controller     with Good quality
editor by czh

China LANDTOP YC single phase 2hp ac electric synchronous electrical motor motor armature

Warranty: 1 year
Model Number: YC
Type: Induction Motor
Frequency: 50Hz
Phase: Single-phase
Protect Feature: Totally Enclosed
AC Voltage: 208-230 / 240 V
Efficiency: IE 1
Protection Class: IP44/IP54
Insulation Class: B/F
Cooling Method: ICO141
Duty: Continuous(S1)
Rated Voltage: 220±5%
Mounting: B3/B5/B35
Output: 100%
Winding: 100% copper wire
Pole: 4pole/2pole
Product Name: LANDTOP YC single phase 2hp ac electric synchronous electrical motor
Packaging Details: carton box or plywood case

LANDTOP YC single phase 2hp ac electric asynchronous electrical motor

1). YC series single-phase asynchronous motor is commonly known as a capacitor start motor. Single phase motor stator winding has a primary winding and a secondary winding, the phase difference of 90 degrees in space, We know that the single-phase motor is the main winding of the magnetic field is generated pulsating magnetic field, through the secondary winding and capacitor split phase, in order to produce a fixed rotation direction of the magnetic field, when the speed exceeds the70-80% role, the centrifugal switch will cut off the secondary winding and the start capacitor, capacitor start motor is characterized by large starting torque, starting torque is greater than 1.8, low power factor, used to start demanding situations, cast iron shell motor.
2). YC series heavy-duty capacitor start motor, YC series of small power motors, aluminum shell MC series capacitor start motor. Structure must have a centrifugal switch and starting capacitor, with a high starting torque and good operation performance, small volume, light weight, low noise, convenient maintenance. YC series single-phase asynchronous motor applied to general machinery and equipment without special requirements, such as agricultural machinery, food machinery, fan, water pump, machine, mixing machine, air compressor.

Key words
single phase 2hp electric motor electrical motor ac asynchronous motor

Operation condition
Ambient temperature: -15℃≤θ≤40℃
Altitude: ≤1000m
Protection class: IP44
Insulation class: B/F
Rated voltage: 220V, other voltage on request
Cooling type: IC 0141
Duty: Continuous(S1)
Rated frequency: 50HZ, other frequency on request.
Technical data

TypeOut
put
Voltage(V)Current(A)Freq.(Hz)PowerfactorEff(%)Speed (r/min)Tstart/TnIst/InTmax/Tn
kWHP
YC90S-21.11.52207.2500.9573.228802.861.8
YC90L-21.522208.9500.977629002.871.8
YC100L-22.2322013.2500.9678.8290036.51.8
YC90S-40.7512205500.9373.314502.86.51.8
YC90L-41.11.52207.8500.97514502.561.8
YC100L-41.522209.3500.9279.414502.871.8
YC112M-42.2322013.6500.981.614502.36.51.8
YC132S1-43422018.2500.983.214502.16.51.8
YC132S2-43.7522022500.984.914502.16.51.8
YC132M1-45.57.522032.5500.985146026.51.8
YC132M2-47.51022040500.985.5146026.51.8
Company Information

LANDTOP GROUP is specialized in manufacturing and exporting a wide range of electromechanical products, covering Alternators, Generators, Electric Motors etc. With years of development, LANDTOP has developed into a large-scale, modern, comprehensive and international company. Our sales department is located in HangZhou City (HangZhou Landtop Co., Ltd. ), a sea-port city, enjoying convenient transportation network. We also have our own factory in HangZhou City (HangZhou Landtop Power Co., Ltd. ). Our international center is located in Hongkong (Hongkong Landtop Group Ltd. ). Our group is equipped with a great number of precise assemble lines, integrated testing systems and checkout equipment. We have professional engineers, skilled QC members, experienced salesmen and the best after-sales services. The current annual export production value is over 15 million US dollars.

Production Line

The procedure we make
1. Stamping of lamination2. Rotor die-casting3. Winding and inserting – both manual and semi-automatically4. Vacuum varnishing5. Machining shaft, housing, end shields, etc…6. Rotor balancing7. Painting – both wet paint and powder coating8. assembly9. Packing10. Inspecting spare parts every processing11. 100% test after each process and final test before packing.

Our advantagesDirectly Manufacturer – Over 10 years experience in electric motor field1.100% Copper wire and output 2.OEM Service 3.CE/ISO Approved 4.20-30days lead time
5.We are Alibaba Assessed Gold Supplier and Trade Assurance6.Best production capability, best quality control, best service, also best price
An electric motor from materials to full assemble motor, must pass 15 times check, and 100% testing of output power & voltage & electric current & non-load, 50% load, 75% load, 100% load, and also check the nameplate and packing. Finally shipping to our customers.

Certificates & Exhibition

Packaging & Shipping
FAQQ: Do you offer OEM service?
A: Yes
Q: What is your payment term?
A: 30% T/T in advance, 70% balance when receiving B/L copy Or 100% irrevocable L/C at sight.
Q: What is your lead time?
A: About 20-30 days after receiving advance deposit or original L/C.
Q: What certificates do you have?
A: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc.
Q: What warranty do you provide?
A: One year, during the guarantee period, we will supply freely of the easy damaged parts for the possible problems except for the incorrect operation. After expiration, we supply cost spare parts for alternator maintenance.

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.
Motor

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China LANDTOP YC single phase 2hp ac electric synchronous electrical motor     motor armatureChina LANDTOP YC single phase 2hp ac electric synchronous electrical motor     motor armature
editor by czh

China wholesaler NEMA 143T 110V 220V 5HP TEFC Single Phase electric motor for Air Compressor near me shop

Warranty: 3months-1year
Model Number: F56C
Type: Induction Motor
Frequency: 60HZ
Phase: Single-phase
Protect Feature: Totally Enclosed
AC Voltage: 115-230/208V
Efficiency: IE 2
Power: 1HP-10HP
ENCL.: ODP
Mounting: C flange face and removable
Packaging Details: woodbox
Port: HangZhou

NEMA 143T 110V 220V 5HP TEFC Single Phase electric motor for Air Compressor HP1HP-10HPFrameNEMA Rolled Steel, 56–215TStart TorqueTst=250%EndosureTEFCInsulationF. Certification Detailed Images Why Choose Us WHY CHOOSE JIRUNA.Certificates passed:tests passed for most of our motors and can supply reports.
B.Fast feedback for customers:24 hours reply for all customers’ inquiries. C. Competitive prices. D. Quality guarantee:We have shipped much motors to Italy, Spain, and other European and USA customers with high quality.E. Fast and Timely delivery:Usually 10-15 days for goods production.F. Professional Technical support and After-sale service.G.Customized service for kind of motor according to your requirement.
Our Company WorkshopStamping Machinery, CNC-Machinery, Vacuum Pressure Impregnating, Plating Machinery. and so on.
FAQ Q1: What kind motors you can provide?A1: For now, we mainly provide permanent magnet brush dc motors, brushless dc motor, dc gear motor, micro dc motor, ac gear motor, planetary gear motor, with diameter range in 42~110mm. NEMA dc motor. NEMA dc Motor. stainless steel motor
Q2: Is there a MOQ for your motors?A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 30% to 50% difference based on different style.
Q3: Could you send me a price list?A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s really difficult for us to provide a price list. If you can share your detailed specification and order qty, we’ll see what offer we can provide.
Q4: Are you motors reversible?A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.
Q5:How about your delivery time? A5: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty. For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.Please take the sales confirmation for final reference.
Packing & Delivery THE SAMPLE BY EXPRESS OR AIR
LCL=LESS THAN CONTAINER LOAD, FCL=FULL CONTAINER LOAD, BY SHIPMENT
Recommend Products

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.
Motor

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China wholesaler NEMA 143T 110V 220V 5HP TEFC Single Phase electric motor for Air Compressor  near me shop China wholesaler NEMA 143T 110V 220V 5HP TEFC Single Phase electric motor for Air Compressor  near me shop

China wholesaler 10 hp 15 hp single phase electric motor 1500 rpm electric motor 110v 15kw electric motors with Free Design Custom

Warranty: 3months-1year, 2 YEARS
Model Number: AC electric fan motor
Type: Asynchronous Motor
Frequency: 50HZ/60HZ
Phase: Single-phase
Protect Feature: Other
AC Voltage: 220V/230V/240V/120V/110V
Efficiency: IE 2
Product Name: Refrigerator fan motor
Used for: Home Appliance
Lead time: 30 days after payment
Application: CROSS FLOW FAN ,OVEN ,HEATING
Speed: 1500~2000 RPM
Rated Voltage: 115V,230V
Rated Power: CUSTOMER DESIGN
Mounting: FREE STHangZhouRD
Protection class: B,F
Certification: CCC, ce, RoHS
Packaging Details: 25pcs per carton carton size: 48*39*16.5cm N.W/G.W:20/21kg
Port: HangZhou/ZheJiang

10 hp 15 hp single phase electric motor 1500 rpm electric motor 110v 15kw electric motors

ApplicationSpeedNumber of StatorIndustrial,Air conditioner , home appliances ,etcAs requirementsSingle-Phase,three phase, AC/DC/ECFunctionWire MaterialTrademarkDriving, ControlCopperLONGWELL OR CUSTOMER BRANDSpecificationOriginHS CodeCE, ROHS, TUV, SGS, CCCChina841595710 Shaded pole CZPT AC motors have a low starting torque that provides a smooth and quiet start up while being more economical than other types of replacement motors used in blower applications such as bathroom fans and range hoods. Shaded pole room air conditioner AC motors have a low starting torque that provides a smooth and quiet startup while being more economical than other types of replacement motors used to power fans in air conditioning equipment. Permanent split capacitor (PSC) air conditioner AC motors provide powerful, smooth, and softer startups for use with fans and blowers that must gradually come up to speed after start up. They have a capacitor that decreases the amount of power consumed for a given load.

How to Assemble a Planetary Motor

A Planetary Motor uses multiple planetary surfaces to produce torque and rotational speed. The planetary system allows for a wide range of gear reductions. Planetary systems are particularly effective in applications where higher torques and torque density are needed. As such, they are a popular choice for electric vehicles and other applications where high-speed mobility is required. Nevertheless, there are many benefits associated with using a planetary motor. Read on to learn more about these motors.

VPLite

If you’re looking to replace the original VP, the VPLite has a similar output shaft as the original. This means that you can mix and match your original gear sets, including the input and output shafts. You can even mix metal inputs with plastic outputs. Moreover, if you decide to replace the gearbox, you can easily disassemble the entire unit and replace it with a new one without losing any output torque.
Compared to a planetary motor, a spur gear motor uses fewer gears and is therefore cheaper to produce. However, the latter isn’t suitable for high-torque applications. The torque produced by a planetary gearmotor is evenly distributed, which makes it ideal for applications that require higher torque. However, you may have to compromise on the torque output if you’re looking for a lightweight option.
The VersaPlanetary Lite gearbox replaces the aluminum ring gear with a 30% glass-filled nylon gear. This gearbox is available in two sizes, which means you can mix and match parts to get a better gear ratio. The VPLite gearbox also has a female 5mm hex output shaft. You can mix and match different gearboxes and planetary gearboxes for maximum efficiency.
Motor

VersaPlanetary

The VersaPlanetary is a highly versatile planetary motor that can be mounted in a variety of ways. Its unique design includes a removable shaft coupler system that makes it simple to swap out the motor with another. This planetary motor mounts in any position where a CIM motor mounts. Here’s how to assemble the motor. First, remove the hex output shaft from the VersaPlanetary output stage. Its single ring clip holds it in place. You can use a drill press to drill a hole into the output shaft.
After mounting the gearbox, you can then mount the motor. The mounting hardware included with the VersaPlanetary Planetary Motor comes with four 10-32 threaded holes on a two-inch bolt circle. You can use these holes to mount your VersaPlanetary on a CIM motor or a CIM-compatible motor. Once assembled, the VersaPlanetary gearbox has 72 different gear ratios.
The VersaPlanetary gearbox is interchangeable with regular planetary gearboxes. However, it does require additional parts. You can purchase a gearbox without the motor but you’ll need a pinion. The pinion attaches to the shaft of the motor. The gearbox is very sturdy and durable, so you won’t have to worry about it breaking or wearing out.

Self-centering planetary gears

A planetary motor is a simple mechanical device that rotates around a axis, with the planets moving around the shaft in a radial direction. The planets are positioned so that they mesh with both the sun gear and the output gears. The carrier 48 is flexibly connected to the drive shaft and can move depending on the forces exerted by the planet gears. In this way, the planets can always be in the optimal mesh with the output gears and sun gear.
The first step in developing a planetary gear motor is to identify the number of teeth in each planet. The number of teeth should be an integer. The tooth diameters of the planets should mesh with each other and the ring. Typically, the teeth of one planet must mesh with each other, but the spacing between them must be equal or greater than the other. This can be achieved by considering the tooth count of each planet, as well as the spacing between planets.
A second step is to align the planet gears with the output gears. In a planetary motor, self-centering planetary gears must be aligned with both input and output gears to provide maximum torque. For this to be possible, the planet gears must be connected with the output shaft and the input shaft. Similarly, the output shaft should also be able to align with the input gear.
Motor

Encoders

A planetary geared motor is a DC motor with a planetary gearbox. The motor can be used to drive heavy loads and has a ratio of 104:1. The shaft speed is 116rpm when it is unloaded. A planetary gearbox has a low backlash and is often used in applications that need high torque. Planetary Motor encoders can help you keep track of your robot’s position or speed.
They are also able to control motor position and speed with precision. Most of them feature high resolution. A 0.18-degree resolution encoder will give you a minimum of 2000 transitions per rotation between outputs A and B. The encoder is built to industrial standards and has a sturdy gearbox to avoid damage. The encoder’s robust design means it will not stall when the motor reaches its maximum speed.
There are many advantages to a planetary motor encoder. A high-quality one will not lose its position or speed even if it’s subject to shocks. A good quality planetary motor will also last a long time. Planetary motors are great for resale or for your own project. If you’re considering buying a planetary motor, consider this information. It’ll help you decide if a particular model is right for your needs.

Cost

There are several advantages of planetary motors. One of the biggest is their cost, but they can also be used in many different applications. They can be combined with a variety of gearboxes, and are ideal for various types of robots, laboratory automation, and production applications. Planetary gearboxes are available in many different materials, and plastic planetary gearboxes are an economical alternative. Plastic gearboxes reduce noise at higher speeds, and steel input stage gears are available for high torques. A modified lubrication system can help with difficult operating conditions.
In addition to being more durable, planetary motors are much more efficient. They use fewer gears, which lowers the overall cost of production. Depending on the application, a planetary motor can be used to move a heavy object, but is generally less expensive than its counterpart. It is a better choice for situations where the load is relatively low and the motor is not used frequently. If you need a very high torque output, a planetary motor may be the better option.
Planetary gear units are a good choice for applications requiring high precision, high dynamics, and high torque density. They can be designed and built using TwinCAT and TC Motion Designer, and are delivered as complete motor and gear unit assemblies. In a few simple steps, you can calculate the torque required and compare the costs of different planetary gear units. You can then choose the best model for your application. And because planetary gear units are so efficient, they are a great option for high-end industrial applications.
Motor

Applications

There are several different applications of the planetary motor. One such application is in motion control. Planetary gearboxes have many benefits, including high torque, low backlash, and torsional stiffness. They also have an extremely compact design, and can be used for a variety of applications, from rack and pinion drives to delta robotics. In many cases, they are less expensive to manufacture and use than other types of motors.
Another application for planetary gear units is in rotary tables. These machines require high precision and low backlash for their precise positioning. Planetary gears are also necessary for noise reduction, which is a common feature in rotary tables. High precision planetary gears can make the height adjustment of OP tables a breeze. And because they are extremely durable and require low noise, they are a great choice for this application. In this case, the planetary gear is matched with an AM8000 series servomotor, which gives a wide range of choices.
The planetary gear transmission is also widely used in helicopters, automobiles, and marine applications. It is more advanced than a countershaft drive, and is capable of higher torque to weight ratios. Other advantages include its compact design and reduced noise. A key concern in the development of this type of transmission is to minimize vibration. If the output of a planetary gear transmission system is loud, the vibration caused by this type of drive system may be too loud for comfort.

China wholesaler 10 hp 15 hp single phase electric motor 1500 rpm electric motor 110v 15kw electric motors  with Free Design CustomChina wholesaler 10 hp 15 hp single phase electric motor 1500 rpm electric motor 110v 15kw electric motors  with Free Design Custom

China factory Yc112m-4 Yc Series 3HP/2.2kw Heavy Duty Single Phase Power Capacitor Start AC Induction Electric Motor for Agriculture and Household, China Factory near me manufacturer

Product Description

 

Motor Features

 

Output  3 HP, 2.2 KW
Pace 1450 r/min
Existing  18.fifty A
Eff.  73.%
Electrical power Factor  0.seventy four cos
Begin Recent/ Rated Recent  6.5
Begin Torque/ Rated Torque  2.5
Max. Torque/ Rated Torque  1.8
Pole Quantity  4
Rated Frequency  50Hz/60Hz
Rated Voltage  110V, 115V, 120V, 220V, 230V, 240V
Ambient Temperature  -15°C-40°C 
Altitude  not CZPT 1000m
Relative air humidity  not CZPT ninety%
Duty  Continuous (S1)
Insulation Class  B/F
Security Class  IP44, IP55
Frame material  Cast iron(71-355 body)
Cooling Technique  IC0141
Packing  Plywood scenario
Certifications  CE, CCC, ISO9001: 2008

INTRODUTION

YC collection large-obligation singlephase motors are suitable for powering small sort device equipment and h2o pumps, specifically for family workshops in which only one-period recent supply is offered. Motors of the mentioned series are built-in with up-to date design, created with the best good quality supplies and have the attributes of nice hunting visual appeal, outstanding overall performance, easy servicing and dependable managing. The designations, signs and nominal values are all in conformity with L.E.C expectations.

>> Physique: solid iron 
>> C&U bearing
>> Stator with copper winding
>>100% Copper wire
>>50% Copper &50% aluminum
>>a hundred% Aluminum
>>OEM service offered

Software
Turbines are to be utilised>>In city
>>The countryside
>>Operate internet sites, mountains and pasture lands It can also be utilized as a reserved electricity resource for emergent circumstance.

Mouting Dimensions (mm)

A B C D E F G H K M N P R S T
190 a hundred and forty 70 28 60 8 24 112 12 215 a hundred and eighty 250 fifteen four

Frame Dimensions (mm)

AB AC Ad AE High definition L
245 250 160 one hundred forty three hundred 440

Induction motors, also known as asynchronous motors, use the electromagnetic induction produced by the magnetic field of the stator to generate present in the rotor, thereby producing torque. These motors do not run at a speed in sync with the recent, consequently the title. They use the phenomenon of electromagnetic induction to convert electrical vitality into mechanical vitality. Induction motor rotors are the most typical variety of AC motor identified in pumps, compressors, and other machines of all sorts.
An AC motor is a sort of motor that utilizes the phenomenon of electromagnetic induction. AC electrical power drives the motor. It is a current that periodically reverses direction and modifications its magnitude of the present over time. This present is the opposite of a direct current or “DC” which flows in only a single route. AC motors can provide a relatively effective way to create mechanical vitality from a simple electrical enter sign.

China factory Yc112m-4 Yc Collection 3HP/2.2kw Heavy Responsibility One Phase Power Capacitor Start AC Induction Electric Motor for Agriculture and Home, China Manufacturing facility     close to me manufacturer

China manufacturer High Speed AC 220V 1HP Yc Single Phase Asynchronous Electric Motor near me supplier

Item Description

   Products Description

YL series solitary-stage twin-capacitor asynchronous motor is designed and made in according with nationwide normal, newlydeveloped by our company with low sounds, compact construction, gentle bodyweight, easy routine maintenance and so forth. These motors are widely used onair compressors, pumps, fans, fridge, health care devices, tiny-dimension device and so forth. specifically for event exactly where only solitary -phasepower source is offered

Ambient temperating: 15ºC≤0≤40ºC
Attitude: Not exceeding one thousand meters
Rated voltage: 220V±5%
Rated frequency: 50HZ
Insulation Class: Course B/F
Safety course: Ongoing managing
Responsibility/Ranking: IP44/IP54

Item Detailes

Why Select Us

Pre-sales support:
one.we value every single inquiry sent to us,ensure swift aggressive supply within 12 several hours.
two.We cooperate with buyer to layout and create the nwe items.Give all required doc.
3.We are a product sales crew,with all technological support from engineer staff.

Following product sales support:
1.We regard your feed back again soon after recevie the merchandise.
2.We provide 12-24 months guarantee after products arrive.
three.We promise all spare elements accessible in life time use.
four.We lodge your complain inside 48 several hours.

Engineer On the internet Variety

Company Profile

FAQ

Suggestions

AC motors differ from many other types of motors, especially some of the more familiar DC (immediate current) motors, by numerous critical criteria. The most standard of these is the simple fact that an AC motor depends entirely on the alternating current all around its circuit to make powerful mechanical strength. We’ll examine this distinctive approach in much more depth in the pursuing sections of this guide.
DC motors use power from batteries or other making resources that offer a consistent voltage. A DC motor consists of numerous parts, the most renowned of which incorporate bearings, shafts, and gearboxes or gears. DC motors offer greater velocity variation and manage and generate a lot more torque than AC motors. The two kinds of DC motors include Brushed motors: Brushed motors are one of the oldest types and are internally commutated motors pushed by DC recent. A brushed motor consists of a rotor, brushes, and a shaft. The demand and polarity of the brushes management the direction and pace of the motor. Brushless Motors: In modern years, brushless motors have become well-liked for numerous applications, primarily simply because of their effectiveness. Brushless motors are created in the identical way as brushed motors, minus the brushes of system. Brushless motors also incorporate focused circuitry to control pace and course. In brushless motors, magnets are mounted close to the rotor, an efficiency-boosting configuration.

China manufacturer High Speed AC 220V 1HP Yc Single Phase Asynchronous Electric Motor     near me supplier

China Hot selling Plastic Sealed Steel Housing Single Phase Split Air Conditioner Air Cooler Electric Fan Motor wholesaler

Solution Description

Plastic Sealed Metal Housing One Period Split Air Conditioner Air Cooler Electric Admirer Motor

 

1. MOTOR Characteristics:

Plastic Sealed Motors for Indoor Air Cooler.

Plastic Sealed Motors for Assortment Hood.

Plastic Sealed Motors for Air Purifier/Bath Heater/Air Ventilation.
Shaft key and protector supplied    
Motors manufactured for steady S1 duty       
Make use of Vacuum impregnated Course B insulation  
Course F insulation on ask for
Higher functionality and performance

 

two. Consumer Positive aspects:

H2o, dust and vermin resistant
Tranquil operation
Electric power saving
Straightforward set up (bolt on ft or brackets as needed)
Corrosion resistant
Trustworthy
Exceptional existence, Very good performance, 1.8 to 2.5 times much more than the rated torque.

Reputable in place, city or manufacturing unit environments

 

three.Technical Data:(220V/50HZ)

Product

W

Capacitor

Velocity rpm

Recent A

YYS60-4

sixty

5uf

800-1100

.seven

YYS80-4

80

6uf

800-1200

1

YYS100-four

a hundred

8uf

800-1300

one.three

YYS120-4

120

8uf

800-1300

one.five

 
4.Particulars in photographs:
 

AC motors and equipment motors contain one-stage motors for solitary-section AC energy and a few-phase motors for 3-period AC energy. A one-section motor merely needs to be related to a one-period electrical power source through the integrated capacitors to function. A few-section motors do not require capacitors. You just hook up the motor right to the three-section AC power source. Dongfang Electric provides a vast selection of AC motors and gear motors Continuous or variable velocity AC motors are offered with solitary or three-phase equipment and electromagnetic braking choices
DC motors use strength from batteries or other producing resources that give a consistent voltage. A DC motor is made up of several components, the most famous of which include bearings, shafts, and gearboxes or gears. DC motors supply much better speed variation and control and produce a lot more torque than AC motors. The two sorts of DC motors contain Brushed motors: Brushed motors are a single of the oldest types and are internally commutated motors pushed by DC recent. A brushed motor is composed of a rotor, brushes, and a shaft. The charge and polarity of the brushes manage the path and pace of the motor. Brushless Motors: In recent several years, brushless motors have grow to be well-known for several programs, largely due to the fact of their effectiveness. Brushless motors are constructed in the same way as brushed motors, minus the brushes of program. Brushless motors also incorporate dedicated circuitry to control speed and path. In brushless motors, magnets are mounted all around the rotor, an performance-boosting configuration.

China Hot selling Plastic Sealed Steel Housing Single Phase Split Air Conditioner Air Cooler Electric Fan Motor     wholesaler