China Custom Yb3 Series Explosion-Proof Three Phase Induction Electric Motor 2.4.6.8.10.12poles manufacturer

Product Description

Product Description

Why choose us ?
ELECTRIC MOTOR FEATURES  

Electric motor frame from 56 – 355, output range from 0.17HP to 430HP

Motor mounting type B3 (IM 1001), B35 (IM 2001), B5 (IM 3001), B14 (IM 3601), B34 (IM 2101)

Optional voltage 110V, 120V, 220V, 240V, 220/380V, 230V/400V, 380V/660V, 50HZ or 60HZ

Protection type IP44, IP54, IP55 on request 

Multiple mounting arrangement for optional           
Aluminum frame, end shields and base    

Strong cast iron frame
High strength cable
Shaft key and protector supplied        
Superior paint finish         
45# steel shaft and stainless steel shaft is optional
Electric motor continuous duty S1,S4
Electric motor have vacuum impregnation for insulation
Electric motor is class F insulation and class H insulation is optional
Electric motor has been make according to ISO9001, CE, UL, CCC, GS request

All of our products are make according to GOST, RoHS and IEC standard.

High performance and IE1, IE2, IE3 efficiency  

 

OUR ELECRIC MOTOR FOR CUSTOMER BENEFITS

Electricity saving and quiet operation
Electric motor can withstand water, dust and vermin
Electric motor very easy installation
Electric motor dependable Corrosion resistant and long life to work
Reliability performance and very competitive price.
 

HOW TO MAKE MOTOR ON Our COMPANY

1. Silicon steel DR510, 800, 600, 360 standard use stamping of lamination stator and rotor die-casting

2. 100% copper winding and inserting stator (manual and semi-automatically)

3. Stator Vacuum impregnation and drying

4. CNC machining motor shaft, frame, end shields, etc

5. Professional workman inspecting spare parts every processing

6. Electric motor assembly product line

7. Electric motor will 100% test before painting.

8. Electric motor spray-paint on motor painting product line

9. Electric motor will 100% check again before packing.

An electric motor from material to finish motor, must pass 15 time check, and 100% testing, output power, voltage, electric current, non-load, 50% load, 75% load, 100% load and check the nameplate, packing. Finally shipping to our customer.

Att:Our company price was based on high height cold rolled steel stator to promise the efficiency ,if you need to cheaper ,you can choose short height stator or hot cold rolled steel stator ,thankyou

YBX3 series explosion-proof three-phase asynchronous motor
Technical data         Rated voltage:380v  Frequency:50HZ
Type Rated power Current (A) Speed (r/min) Eff.% P.F lst
ln
Tst
Tn
Tmax
Tn
dB(A)
KW HP
YBX3-63M1-2 0.18 0.24 0.52 2730 65 0.8 5.6 2.3 2.2 61
YBX3-63M2-2 0.25 0.33 0.69 2730 68 0.81 5.6 2.3 2.2 61
YBX3-71M1-2 0.37 0.5 0.99 2750 69 0.81 6.3 2.3 2.2 64
YBX3-71M2-2 0.55 0.75 1.38 2790 75 0.83 6.3 2.3 2.3 64
YBX3-80M1-2 0.75 1 1.8 2825 77.5 0.83 6.8 2.3 2.3 62
YBX3-80M2-2 1.1 1.5 2.43 2825 82.8 0.83 7.3 2.3 2.3 62
YBX3-90S-2 1.5 2 3.2 2840 84.1 0.84 7.6 2.3 2.3 67
YBX3-90L-S 2.2 3 4.6 2840 85.6 0.85 7.8 2.3 2.3 67
YBX3-100L-2 3 4 6.3 2880 86.7 0.87 8.1 2.3 2.3 74
YBX3-112M-2 4 5.5 7.9 2890 87.6 0.88 8.3 2.3 2.3 77
YBX3-132S1-2 5.5 7.5 10.7 2900 88.6 0.88 8 2.2 2.3 79
YBX3-132S2-2 7.5 10 14.3 2900 89.5 0.89 7.8 2.2 2.3 79
YBX3-160M1-2 11 15 20.7 2930 90.5 0.89 7.9 2.2 2.3 81
YBX3-160M2-2 15 20 28 2930 91.3 0.89 8 2.2 2.3 81
YBX3-160L-2 18.5 25 34.4 2930 91.8 0.89 8.1 2.2 2.3 81
YBX3-180M-2 22 30 40.7 2940 92.2 0.89 8.2 2.2 2.3 83
YBX3-200L1-2 30 40 55.1 2950 92.9 0.89 7.5 2.2 2.3 84
YBX3-200L2-2 37 50 67.7 2950 93.3 0.89 7.5 2.2 2.3 84
YBX3-225M-2 45 60 82 2970 93.7 0.89 7.6 2.2 2.3 86
YBX3-250M-2 55 75 99.9 2970 94 0.89 7.6 2.2 2.3 89
YBX3-280S-2 75 100 135.3 2970 94.6 0.89 6.9 2 2.3 91
YBX3-280M-2 90 125 161.7 2970 95 0.89 7 2 2.3 91
YBX3-315S-2 110 150 195.5 2980 95 0.9 7.1 2 2.2 92
YBX3-315M-2 132 180 233.6 2980 95.4 0.9 7.1 2 2.2 92
YBX3-315L1-2 160 215 280 2980 95.4 0.91 7.1 2 2.2 92
YBX3-315L2-2 200 270 350 2980 95.4 0.91 7.1 2 2.2 92
YBX3-355M-2 250 340 549 2980 95.8 0.91 7.1 2 2.2 100
YBX3-355L-2 315 420 435.7 2980 95.8 0.91 7.1 2 2.2 100
1500r/min
YBX3-63M1-4 0.12 0.16 0.44 1320 58 0.72 4.5 2.3 2.2 52
YBX3-63M2-4 0.18 0.24 0.61 1320 63 0.73 4.5 2.3 2.2 52
YBX3-71M1-4 0.25 0.33 0.78 1350 66 0.74 5.3 2.3 2.2 55
YBX3-71M2-4 0.37 0.5 1.08 1350 69 0.75 5.3 2.3 2.2 55
YBX3-80M1-4 0.55 0.75 1.4 1390 80.7 0.75 6.3 2.3 2.3 56
YBX3-80M2-4 0.75 1 1.8 1390 82.3 0.75 6.5 2.3 2.3 56
YBX3-90S-4 1.1 1.5 2.7 1400 83.8 0.75 6.6 2.3 2.3 59
YBX3-90L-4 1.5 2 3.6 1400 85 0.75 6.9 2.3 2.3 59
YBX3-100L1-4 2.2 3 4.8 1420 86.4 0.81 7.5 2.3 2.3 64
YBX3-100L2-4 3 4 6.4 1420 87.4 0.82 7.6 2.3 2.3 64
YBX3-112M-4 4 5.5 8.4 1440 88.3 0.82 7.7 2.3 2.3 65
YBX3-132S-4 5.5 7.5 11.4 1440 89.2 0.82 7.5 2 2.3 71
YBX3-132M-4 7.5 10 15.2 1440 90.1 0.83 7.4 2 2.3 71
YBX3-160M-4 11 15 21.6 1460 91 0.85 7.5 2.2 2.3 73
YBX3-160L-4 15 20 28.9 1460 91.8 0.86 7.5 2.2 2.3 73
YBX3-180M-4 18.5 25 35.4 1470 92.2 0.86 7.7 2.2 2.3 76
YBX3-180L-4 22 30 42 1470 92.6 0.86 7.8 2.2 2.3 76
YBX3-200L-4 30 40 56.9 1470 93.2 0.86 7.2 2.2 2.3 76
YBX3-225S-4 37 50 69.8 1480 93.6 0.86 7.3 2.2 2.3 78
YBX3-225M-4 45 60 84.7 1480 93.9 0.86 7.4 2.2 2.3 78
YBX3-250M-4 55 75 103.1 1480 94.2 0.86 7.4 2.2 2.3 79
YBX3-280S-4 75 100 136.7 1480 94.7 0.88 6.7 2.2 2.3 80
YBX3-280M-4 90 125 163.6 1480 95 0.88 6.9 2.2 2.3 80
YBX3-315S-4 110 150 199.1 1485 95.4 0.88 6.9 2.2 2.2 88
YBX3-315M-4 132 180 238.9 1485 95.4 0.88 6.9 2.2 2.2 88
YBX3-315L1-4 160 215 286.3 1485 95.4 0.89 6.9 2.2 2.2 88
YBX3-315L2-4 200 270 357.9 1485 95.4 0.89 6.9 2.2 2.2 88
YBX3-355M-4 250 340 440.5 1490 95.8 0.9 6.9 2.2 2.2 95
YBX3-355L-4 315 420 555.1 1490 95.8 0.9 6.9 2.2 2.2 95
                     
Type Rated power Current (A) Speed (r/min) Eff.% P.F lst
ln
Tst
Tn
Tmax
Tn
dB(A)
KW HP
YBX3-71M1-6 0.18 0.24 0.71 865 62 0.66 4 2 2.1 52
YBX3-71M2-6 0.25 0.33 0.92 865 63 0.68 4 2 2.1 52
YBX3-80M1-6 0.37 0.35 1.27 865 63 0.7 4 2 2 54
YBX3-80M2-6 0.55 0.75 1.54 870 75.4 0.72 4 2.1 2 55
YBX3-90S-6 0.75 1 2.3 910 77.7 0.72 5.8 2.1 2.1 57
YBX3-90L-6 1.1 1.5 2.9 910 79.9 0.73 5.9 2.1 2.1 57
YBX3-100-6 1.5 2 3.8 940 81.5 0.74 6 2.1 2.1 61
YBX3-112M-6 2.2 3 5.4 940 83.4 0.74 6 2.1 2.1 65
YBX3-132S-6 3 4 7.9 960 84.9 0.74 6.2 2.1 2.1 69
YBX3-132M1-6 4 5.5 8.4 9.6 86.1 0.74 6.8 2.1 2.1 69
YBX3-132M2-6 5.5 7.5 12.7 9.6 87.4 0.75 7.1 2.1 2.1 69
YBX3-160M-6 7.5 10 16.4 970 89 0.78 6.7 2.1 2.1 70
YBX3-160L-6 11 15 23.5 970 90 0.79 6.9 2.1 2.1 70
YBX3-180L-6 15 20 30.9 970 91 0.81 7.2 2.1 2.1 73
YBX3-200L1-6 18.5 25 37.9 970 91.5 0.81 7.2 2.1 2.1 73
YBX3-200L2-6 22 30 44.3 970 92 0.82 7.3 2.1 2.1 73
YBX3-225M-6 30 40 60.8 980 92.5 0.81 7.1 2.1 2.1 74
YBX3-250M-6 37 50 72 980 93 0.84 7.1 2.1 2.1 76
YBX3-280S-6 45 60 85 980 93.5 0.86 7.2 2 2 78
YBX3-280M-6 55 75 103.6 985 93.8 0.86 7.2 2 2 78
YBX3-315S-6 75 100 142.3 985 94.2 0.85 6.7 2 2 83
YBX3-315M-6 90 125 172.3 985 94.5 0.86 6.7 2 2 83
YBX3-315L1-6 110 150 207 985 95 0.86 6.7 2 2 83
YBX3-315L2-6 132 180 245.5 985 95 0.87 6.7 2 2 83
YBX3-355M1-6 160 215 296.7 990 93 0.88 6.7 2 2 85
YBX3-355M3-6 200 270 370.9 990 93 0.88 6.7 2 2 85
YBX3-355L2-6 250 340 463.6 990 93 0.88 6.7 2 2 85
750r/min
YBX3-801-8 0.18 0.24 0.86 710 52 0.61 1.8 3.3 1.9 52
YBX3-802-8 0.25 0.33 1.13 710 55 0.61 1.8 3.3 1.9 52
YBX3-90S-8 0.37 0.5 1.44 710 63 0.62 1.8 4 2 56
YBX3-90L-8 0.55 0.75 2.07 710 64 0.63 1.8 4 2 56
YBX3-100L1-8 0.75 1 2.36 710 71 0.68 1.8 4 2 59
YBX3-100L2-8 1.1 1.5 3.32 710 73 0.69 1.8 4 2 59
YBX3-112M-8 1.5 2 4.4 710 75 0.69 1.8 5.5 2 59
YBX3-132S-8 2.2 3 5.6 710 79 0.69 1.8 6 2 61
YBX3-132M-8 3 4 7.6 710 81 0.73 1.8 6 2.2 64
YBX3-169M1-8 4 4.5 10.3 720 81 0.75 1.9 6 2.2 68
YBX3-160M2-8 5.5 7.5 13.4 720 83 0.76 1.9 6 2.2 68
YBX3-160L-8 7.5 10 17.6 720 85 0.76 1.9 6.5 2.2 68
YBX3-180L-8 11 15 25.3 730 87 0.76 1.9 6.5 2.2 70
YBX3-200L-8 15 20 33.7 730 89 0.78 2 6.5 2.2 70
YBX3-225S-8 18.5 25 40 730 90 0.78 2 6 2.2 73
YBX3-225M-8 22 30 47.4 730 90.5 0.79 2 6.5 2.2 73
YBX3-250M-8 30 40 63.4 730 91 0.79 1.9 6.5 2 73
YBX3-280S-8 37 50 77.8 740 91.5 0.79 1.8 6.5 2 75
YBX3-280M-8 45 60 94.1 740 92 0.79 1.8 6.5 2.2 76
YBX3-315S-8 55 75 111.2 740 92.8 0.81 1.9 6 2.2 82
YBX3-315M-8 75 100 151.3 740 93 0.81 1.9 6.5 2.2 82
YBX3-315L1-8 90 125 177.8 740 93.8 0.82 1.9 6.5 2.2 82
YBX3-315L2-8 110 150 216.8 740 94 0.82 1.9 6.5 2.2 82
YBX3-355S-8 132 180 259.6 740 94.2 0.82 2 6.5 2.2 90
YBX3-355M-8 160 215 313.4 740 94.6 0.82 2 6.5 2.2 90
YBX3-355L1-8 185 250 362.3 740 94.6 0.82 2 6.5 2.2 90
YBX3-355L2-8 200 270 386.2 740 94.8 0.82 2 6.5 2.2 90

Detailed Photos

FAQ

Q: Where is Your factory?
A: HangZhou city, ZHangZhoug Province.
 
Q: Do you accept OEM/ODM service?
A: Yes, avaliable.
 
Q: Are you trading company or manufacturer?
A: We are a manufacturer.
 
Q: What about the shipment?
A: By sea, By air and By express delivery.
 
Q: What is the delivery time?
A: It depends on the order quantity, usually 35days after confirmation.
 
Q: Can I buy different products in 1 container?
A: Yes, No probem 
 
Q: What is the warranty time?
A: One year.

Q: Can you offer the sample?
A: Of course we can.

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Explosion-Proof Three-Phase
Rotor Structure: Winding Type
Casing Protection: Explosion-Proof Type
Samples:
US$ 118.51/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

electric motor

How do electric motors contribute to the efficiency of tasks like transportation?

Electric motors play a significant role in enhancing the efficiency of various transportation tasks. Their unique characteristics and advantages contribute to improved performance, reduced energy consumption, and environmental benefits. Here’s a detailed explanation of how electric motors contribute to the efficiency of tasks like transportation:

  1. High Energy Conversion Efficiency: Electric motors are known for their high energy conversion efficiency. They can convert a large percentage of electrical energy supplied to them into mechanical energy, resulting in minimal energy losses. Compared to internal combustion engines (ICEs), electric motors can achieve significantly higher efficiencies, which translates to improved energy utilization and reduced fuel consumption.
  2. Instant Torque and Responsive Performance: Electric motors deliver instant torque, providing quick acceleration and responsive performance. This characteristic is particularly advantageous in transportation tasks, such as electric vehicles (EVs) and electric trains, where rapid acceleration and deceleration are required. The immediate response of electric motors enhances overall vehicle efficiency and driver experience.
  3. Regenerative Braking: Electric motors enable regenerative braking, a process where the motor acts as a generator to convert kinetic energy into electrical energy during deceleration or braking. This recovered energy is then stored in batteries or fed back into the power grid, reducing energy waste and extending the vehicle’s range. Regenerative braking improves overall efficiency and helps maximize the energy efficiency of electric vehicles.
  4. Efficient Power Distribution: Electric motors in transportation systems can be powered by electricity generated from various sources, including renewable energy. This allows for a diversified and cleaner energy mix, contributing to reduced greenhouse gas emissions and environmental impact. By utilizing electric motors, transportation tasks can leverage the increasing availability of renewable energy resources, leading to a more sustainable and efficient transport ecosystem.
  5. Reduced Maintenance Requirements: Electric motors have fewer moving parts compared to ICEs, resulting in reduced maintenance requirements. They eliminate the need for components like spark plugs, fuel injection systems, and complex exhaust systems. As a result, electric motors typically have longer service intervals, lower maintenance costs, and reduced downtime. This enhances operational efficiency and reduces the overall maintenance burden in transportation applications.
  6. Quiet and Vibration-Free Operation: Electric motors operate quietly and produce minimal vibrations compared to ICEs. This characteristic contributes to a more comfortable and pleasant passenger experience, especially in electric vehicles and electric trains. The reduced noise and vibration levels enhance the overall efficiency and comfort of transportation tasks while minimizing noise pollution in urban environments.
  7. Efficient Power Management and Control: Electric motors can be integrated with advanced power management and control systems. This allows for precise control over motor speed, torque, and power output, optimizing efficiency for specific transportation tasks. Intelligent control algorithms and energy management systems can further enhance the efficiency of electric motors by dynamically adjusting power delivery based on demand, driving conditions, and energy availability.
  8. Reduction of Emissions and Environmental Impact: Electric motors contribute to significant reductions in emissions and environmental impact compared to traditional combustion engines. By eliminating direct emissions at the point of use, electric motors help improve air quality and reduce greenhouse gas emissions. When powered by renewable energy sources, electric motors enable nearly zero-emission transportation, paving the way for a cleaner and more sustainable transportation sector.

Through their high energy conversion efficiency, instant torque, regenerative braking, efficient power distribution, reduced maintenance requirements, quiet operation, efficient power management, and environmental benefits, electric motors significantly enhance the efficiency of tasks like transportation. The widespread adoption of electric motors in transportation systems has the potential to revolutionize the industry, promoting energy efficiency, reducing reliance on fossil fuels, and mitigating environmental impact.

electric motor

What advancements in electric motor technology have improved energy efficiency?

Advancements in electric motor technology have played a crucial role in improving energy efficiency, leading to more sustainable and environmentally friendly applications. Here’s a detailed explanation of some key advancements in electric motor technology that have contributed to enhanced energy efficiency:

  1. High-Efficiency Motor Designs: One significant advancement in electric motor technology is the development of high-efficiency motor designs. These designs focus on reducing energy losses during motor operation, resulting in improved overall efficiency. High-efficiency motors are engineered with optimized stator and rotor geometries, reduced core losses, and improved magnetic materials. These design enhancements minimize energy wastage and increase the motor’s efficiency, allowing it to convert a higher percentage of electrical input power into useful mechanical output power.
  2. Premium Efficiency Standards: Another notable advancement is the establishment and adoption of premium efficiency standards for electric motors. These standards, such as the International Electrotechnical Commission (IEC) IE3 and NEMA Premium efficiency standards, set minimum efficiency requirements for motors. Manufacturers strive to meet or exceed these standards by incorporating innovative technologies and design features that enhance energy efficiency. The implementation of premium efficiency standards has led to the widespread availability of more efficient motors in the market, encouraging energy-conscious choices and reducing energy consumption in various applications.
  3. Variable Speed Drives: Electric motor systems often operate under varying load conditions, and traditional motor designs operate at a fixed speed. However, the development and adoption of variable speed drives (VSDs) have revolutionized motor efficiency. VSDs, such as frequency converters or inverters, allow the motor’s speed to be adjusted according to the load requirements. By operating motors at the optimal speed for each task, VSDs minimize energy losses and significantly improve energy efficiency. This technology is particularly beneficial in applications with variable loads, such as HVAC systems, pumps, and conveyors.
  4. Improved Motor Control and Control Algorithms: Advanced motor control techniques and algorithms have contributed to improved energy efficiency. These control systems employ sophisticated algorithms to optimize motor performance, including speed control, torque control, and power factor correction. By precisely adjusting motor parameters based on real-time operating conditions, these control systems minimize energy losses and maximize motor efficiency. Additionally, the integration of sensor technology and feedback loops enables closed-loop control, allowing motors to respond dynamically and adaptively to changes in load demand, further enhancing energy efficiency.
  5. Use of Permanent Magnet Motors: Permanent magnet (PM) motors have gained popularity due to their inherent high energy efficiency. PM motors utilize permanent magnets in the rotor, eliminating the need for rotor windings and reducing rotor losses. This design enables PM motors to achieve higher power densities, improved efficiency, and enhanced performance compared to traditional induction motors. The use of PM motors is particularly prevalent in applications where high efficiency and compact size are critical, such as electric vehicles, appliances, and industrial machinery.
  6. Integration of Advanced Materials: Advances in materials science have contributed to improved motor efficiency. The utilization of advanced magnetic materials, such as rare-earth magnets, allows for stronger and more efficient magnetic fields, resulting in higher motor efficiency. Additionally, the development of low-loss electrical steel laminations and improved insulation materials reduces core losses and minimizes energy wastage. These advanced materials enhance the overall efficiency of electric motors, making them more energy-efficient and environmentally friendly.

The advancements in electric motor technology, including high-efficiency motor designs, premium efficiency standards, variable speed drives, improved motor control, permanent magnet motors, and advanced materials, have collectively driven significant improvements in energy efficiency. These advancements have led to more efficient motor systems, reduced energy consumption, and increased sustainability across a wide range of applications, including industrial machinery, transportation, HVAC systems, appliances, and renewable energy systems.

electric motor

How do electric motors handle variations in load, speed, and torque?

Electric motors are designed to handle variations in load, speed, and torque through various control mechanisms and techniques. Here’s a detailed explanation of how electric motors handle these variations:

  1. Load Variations: Electric motors can handle variations in load by adjusting the amount of torque they produce. When the load on the motor increases, such as when additional resistance or weight is applied, the motor responds by increasing the torque output. This is achieved through the control of the motor’s input current or voltage. For example, in DC motors, increasing the current supplied to the motor can compensate for the increased load, ensuring that the motor can continue to operate at the desired speed.
  2. Speed Variations: Electric motors can handle variations in speed by adjusting the frequency of the power supply or by varying the voltage applied to the motor. In AC motors, the speed is determined by the frequency of the alternating current, so changing the frequency can alter the motor’s speed. In DC motors, the speed can be controlled by adjusting the voltage applied to the motor. This can be achieved using electronic speed controllers (ESCs) or by employing pulse width modulation (PWM) techniques to control the average voltage supplied to the motor.
  3. Torque Variations: Electric motors can handle variations in torque by adjusting the current flowing through the motor windings. The torque produced by a motor is directly proportional to the current flowing through the motor. By increasing or decreasing the current, the motor can adjust its torque output to match the requirements of the load. This can be accomplished through various control methods, such as using motor drives or controllers that regulate the current supplied to the motor based on the desired torque.
  4. Control Systems: Electric motors often incorporate control systems to handle variations in load, speed, and torque more precisely. These control systems can include feedback mechanisms, such as encoders or sensors, which provide information about the motor’s actual speed or position. The feedback signals are compared to the desired speed or position, and the control system adjusts the motor’s input parameters accordingly to maintain the desired performance. This closed-loop control allows electric motors to respond dynamically to changes in load, speed, and torque.

In summary, electric motors handle variations in load, speed, and torque through various control mechanisms. By adjusting the current, voltage, or frequency of the power supply, electric motors can accommodate changes in load and speed requirements. Additionally, control systems with feedback mechanisms enable precise regulation of motor performance, allowing the motor to respond dynamically to variations in load, speed, and torque. These control techniques ensure that electric motors can operate effectively across a range of operating conditions and adapt to the changing demands of the application.

China Custom Yb3 Series Explosion-Proof Three Phase Induction Electric Motor 2.4.6.8.10.12poles   manufacturer China Custom Yb3 Series Explosion-Proof Three Phase Induction Electric Motor 2.4.6.8.10.12poles   manufacturer
editor by CX 2023-12-04